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Abstract−− This paper studies effect of the time 

and space fractional derivatives orders on the un-

steady fluid flow and heat transfer inside a square en-

closure filled with Cu-H2O nanofluid. An active part 

is located in the bottom wall of the enclosure and the-

ory of the conformable fractional derivatives is ap-

plied on the time and space derivatives. The govern-

ing fractional partial differential equations are solved 

numerically using the finite difference method and 

the obtained results are presented in terms of the 

streamlines, isotherms, velocity component, local and 

average Nusselt numbers. The results revealed that 

the local and average Nusselt numbers are enhanced 

as either the time fractional derivatives order or the 

space fractional derivatives order decreases. Also, ef-

fects of variations of the time fractional derivatives 

order are significant only at the low values of the time 

parameter.  

Keywords−− Natural convection; enclosure; 

nanofluid; conformable fractional derivative; finite 

difference. 

I. INTRODUCTION 

Heat transfer by convective transport attracted the atten-

tion of a lot of researchers due to its important practical 

applications in science and engineering.  These applica-

tions include for example cooling electronic system, 

building insulation, solar energy collection, components 

in the electrical and nuclear industries and cooling of 

heat-generating, (Incropera, 1988; Hoogendooren and 

Afgan, 1978; Cha and Jauria, 1984; Imberger and Ham-

blin, 1982).  Kandaswamy et al. (2007) studied effect of 

the different values of the Grashof number, position of 

the heated plat and different aspect ratios on the natural 

convection in a square cavity. They found that the heat 

transfer rate is reduced in both the vertical and horizontal 

positions of the plate as Gr increases. Also, the heat trans-

fer decreases when aspect ratio of the heated thin plate is 

decreased. Performance of the heat transfer and entropy 

generation of the natural convection in a nanofluid-filled 

U-shaped cavity was studied by Cho et al. (2015). The 

results show that when the Rayleigh number increases, 

the Nusselt number and the total entropy generation are 

increased. Effect of the size of the heater in a square en-

closure on the heat transfer was studied by Ragui et al. 

(2013). They found that when the Rayleigh number in-

creases, the heat transfer is supported. An et al. (2013) 

obtained a hybrid numerical solution for the natural con-

vection in a cavity with volumetric heat generation. 

Mansour and Ahmed (2015) studied the natural convec-

tion heat transfer in an inclined triangular enclosure filled 

with Cu-water nanofluid and saturated by a porous me-

dium. Mansour et al. (2014a) studied the natural convec-

tion fluid flow and heat transfer between two cavities 

filled with a water-based nanofluid using the finite differ-

ence method. In Mansour et al. (2014b), the free convec-

tion fluid flow and heat transfer inside C-shaped enclo-

sures filled with a Cu-water nanofluid was discussed nu-

merically using the finite difference method. Ahmed and 

Aly (2019) used the ISPH method to study the natural 

convection of a nanofluid in an enclosure filled with solid 

particles within an inner cross shape. The result showed 

that the decrease in the cross shape lengths by 0.6 in-

creases values of the stream function by 27.8%. Also, the 

cold and moving solid particles give the higher rate of the 

heat transfer comparing with case of the fixed and cold 

solid particles. Raizah et al. (2018) presented the natural 

convection flow of non-Newtonian nanofluids in a 

slanted cavity. The cavity is open, shallow and filled with 

porous media. The results disclosed that when the power-

index n is increased, rate of the heat transfer is reduced 

while the average Bejan number is enhanced.  Aly et al. 

(2018) studied the mixed convection in a cavity saturated 

with a wavy layer porous medium. The study shows that 

the increase in the Darcy number brings a big resistance 

force for the fluid flow and hence increases the heat trans-

fer. Also, the average Bejan number is close to unity at 

the forced convection mode.  

The fractional calculus became an important branch 

in the pure and applied mathematics. The practical appli-

cations of this topic appears  in control theory of dynam-

ical systems, nanotechnology and viscoelasticity 

(Katugampola, 2014; Baleanu et al., 2010; Monje et al., 

2010; Caponetto et al., 2010; Mainardi, 2010). Many re-

searchers give a definition of the fractional derivative. 
The most popular definitions are Riemann-Liouville, Ca-

puto, Riesz and Grünwald-Letnikov (see Oldham and 
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Spanier, 1974; Miller, 1993; Kilbas et al., 2006; Pod-

lubny, 1999). The fractional governing equations for the 

fluids flow are obtained from those of the integer case by 

substituting the derivatives of an integer order with the 

fractional derivatives order 𝛼. For example, 𝛼 = 1 corre-

sponds to the classical diffusion whereas for 0 < 𝛼 < 1, 

the transport phenomena exhibits the sub diffusion and 

the case of 𝛼 > 1 exhibits the super diffusion. Many of 

the usual properties of the ordinary (integer) derivatives 

such as product, quotient and chain rules are not provided 

for the fractional derivatives. So, the researchers found 

some difficulties in using the algebraic operations in the 

non-integer calculus. For these reasons, it was appeared 

a new definition that well-behaved simply. It is called 

“the conformable fractional derivative” and it is depend-

ing just on the basic limit definition, (see Unal et al., 

2015; Abu Hammad and Khalil, 2014a; 2014b; Khalil et 

al., 2014). These references used the limits to introduce 

the conformable fractional derivative in the form: 

𝐷𝛽𝑓(𝑡) = lim
𝜀→0

𝑓(𝑡 + 𝜀𝑡1−𝛽) − 𝑓(𝑡)

𝜀
   ∀𝑡 > 0, 𝛽(0,1], 

𝑓(𝛽)(0) = lim
𝑡→0+

𝑓(𝛽)(𝑡). 

Also, the conformable fractional derivative has the fol-

lowing properties: 

𝐷𝛽𝑡𝑝 = 𝑝𝑡𝑝−𝛽 , 𝑝 ∈ 𝑁, 𝐷𝛽𝑐 = 0, ∀𝑓(𝑡) = 𝑐. 
𝐷𝛽(𝑎𝑓 + 𝑏𝑔) = 𝑎𝐷𝛽𝑓 + 𝑏𝐷𝛽𝑔 , ∀𝑎, 𝑏 ∈ 𝑍 

𝐷𝛽(𝑓𝑔) = 𝑓𝐷𝛽𝑔 + 𝑓𝐷𝛽𝑔 , 

𝐷𝛽𝑓(𝑔) =
𝑑𝑓

𝑑𝑔
𝐷𝛽𝑔,   𝐷𝛽𝑓(𝑔) = 𝑡1−𝛽

𝑑𝑓

𝑑𝑔
, 

Abdeljawad (2015) improved the conformable fractional 

definition and presented the basic concepts of this new 

simple fractional calculus. Iyiola and Nwaeze (2016) in-

troduced some results on the recently proposed conform-

able fractional derivatives and integral. They also applied 

the D’Alambert approach to the conformable fractional 

differential equation as an application. Ahmed et al. 

(2019) studied effect of the fractional parameters α and β 

on the natural convection in a slanted cavity filled with a 

porous medium using the conformable fractional deriva-

tive. The study interested with effects of α, β at different 

values of the Rayleigh number and the inclination angle. 

The result revealed that the increase in the inclination an-

gle gives a clear reduction in both of the fluid flow and 

heat transfer. Also, the convection is better in case of 

higher values of the Rayleigh number.   

The main aim of this paper is to study the natural con-

vention inside an enclosure filled with nanofluid under 

effect of the conformable fractional derivative. The defi-

nition of the conformable fractional derivatives is used to 

treat the time and space fractional derivatives. The result-

ing equations are solved numerically using the finite dif-

ference method. The results show that effects of the pa-

rameter 𝛽 on the streamlines, isothermal, local Nusselt 

and average Nusselt numbers are significant in case of 

the low values of the time parameter. Also, this paper 

provides a detailed discussion as well as a graphical rep-

resentation of all obtained results.    

Table 1. Thermo-physical properties of water and nanoparti-

cles. 

 water Copper(Cu) 

 

997.1 8933 

 

4179 385 

 

0.613 401 

 

  

 
Fig. 1. Physical model of the problem. 

II. METHODS 

A. Problem description 

Let us consider an unsteady two-dimensional natural 

convection flow inside a square cavity of length L that is 

filled with a nanofluid, as shown in Fig. 1. A heat source 

with length B is located on the lower wall. The worked 

nanofluid is assumed to be incompressible, laminar and 

the base fluid (water) and the solid spherical nanoparti-

cles (Cu) are in the thermal equilibrium model. The 

thermo-physical properties (Table 1) of the nanofluid are 

assumed constants except the density variations, which 

are determined based on the Boussinesq approximation.  

B. Mathematical formulation 

The continuity, momentum and energy equations for the 

laminar and unsteady natural convection in the two-di-

mensional enclosure can be written in dimensional form 

as: 

 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0 (1) 

 
𝜕𝑢

𝜕𝜏
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
=

1

𝜌𝑛𝑓
(−

𝜕𝑃

𝜕𝑥
+ 𝜇𝑛𝑓 (

𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2)) (2) 

 
𝜕𝑣

𝜕𝜏
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
=                     

 
1

𝜌𝑛𝑓
(−

𝜕𝑃

𝜕𝑦
+ 𝜇𝑛𝑓 (

𝜕2𝑣

𝜕𝑥2 +
𝜕2𝑣

𝜕𝑦2) + 𝑔(𝜌𝛽)𝑛𝑓(𝑇 − 𝑇𝑒)) (3) 

 
𝜕𝑇

𝜕𝜏
+ 𝑢

𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
= 𝛼𝑛𝑓 (

𝜕2𝑇

𝜕𝑥2 +
𝜕2𝑇

𝜕𝑦2) (4) 

The conformable fractional derivative of the previous 

system can be written as: 

 𝐷𝑥
𝛼𝑢 + 𝐷𝑦

𝛼𝑣 = 0 (5) 

 𝐷𝜏
𝛽

𝑢 + 𝑢𝐷𝑥
𝛼𝑢 + 𝑣𝐷𝑦

𝛼𝑢 =                 
1

𝜌𝑛𝑓
(−𝐷𝑥

𝛼𝑝 + 𝜇𝑛𝑓(𝐷𝑥
𝛼(𝐷𝑥

𝛼𝑢) + 𝐷𝑦
𝛼(𝐷𝑦

𝛼𝑢))) (6) 

)( 3−kgm

)( 11 −− KJkgC p

)( 11 −− KWmk

)( 1−K 51021 −
51067.1 −
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 𝐷𝜏
𝛽

𝑣 + 𝑢𝐷𝑥
𝛼𝑣 + 𝑣𝐷𝑦

𝛼𝑣 =  
1

𝜌𝑛𝑓
(−𝐷𝑦

𝛼𝑝 +                

𝜇𝑛𝑓(𝐷𝑥
𝛼(𝐷𝑥

𝛼𝑣) + 𝐷𝑦
𝛼(𝐷𝑦

𝛼𝑣) + (𝜌𝛽)𝑛𝑓𝑔(𝑇 − 𝑇𝑐))) (7) 

 𝐷𝜏
𝛽

𝑇 + 𝑢𝐷𝑥
𝛼𝑇 + 𝑣𝐷𝑦

𝛼𝑇 =             

 𝛼𝑛𝑓 (𝐷𝑥
𝛼(𝐷𝑥

𝛼𝑇) + 𝐷𝑦
𝛼(𝐷𝑦

𝛼𝑇)) (8) 

where, 𝐷∝ is conformable fractional derivative operator. 

The boundary conditions are: 

for 𝑦 = 0,  
𝑢 = 𝑣 = 0, 

𝜕𝑇

𝜕𝑦
=

𝑞´´

𝑘𝑛𝑓

, (𝐷 − 0.5𝐵)  ≤
𝑥

𝐿
≤  (𝐷 + 0.5𝐵) 

𝜕𝑇

𝜕𝑦
= 0, otherwise. 

for 𝑦 = 𝐿 and 0 ≤ 𝑥 ≤ 1 

𝑢 = 𝑣 = 0, 𝑇 = 𝑇𝑐 

for 𝑥 = 𝐿 and 0 ≤ 𝑦 ≤ 1 

𝑢 = 𝑣 = 0, 𝑇 = 𝑇𝑐 

for 𝑥 = 0 and 0 ≤ 𝑦 ≤ 1 

 𝑢 = 𝑣 = 0, 𝑇 = 𝑇𝑐 (9) 

The thermophysical properties of the nanofluid are 

considered as functions of the nanoparticles volume frac-

tions and those are given as  

The effective density of the nanofluid is given as: 

 𝜌𝑛𝑓 = (1 − 𝜑)𝜌𝑓 + 𝜑𝜌𝑝 (10) 

where 𝜙 is the solid volume fraction of the nanofluid, 

𝜌𝑓 and 𝜌𝑝 are the densities of the fluid and nanoparticles 

respectively. Additionally, the heat capacitance of the 

nanofluid is given by: 

 (𝜌𝑐𝑝)
𝑛𝑓

= (1 − 𝜑)(𝜌𝑐𝑝)
𝑓

+ 𝜑(𝜌𝑐𝑝)
𝑝
 (11) 

Further, the thermal expansion coefficient of the 

nanofluid can be determined by: 

 (𝜌𝛽)𝑛𝑓 = (1 − 𝜑)(𝜌𝛽)𝑓 + 𝜑(𝜌𝛽)𝑝 (12) 

where 𝛽𝑓 and 𝛽𝑝 are coefficients of the thermal expansion 

of the fluid and the nanoparticles, respectively. Moreo-

ver, the thermal diffusivity, 𝛼𝑛𝑓 of the nanofluid is:  

 𝛼𝑛𝑓 =
𝑘𝑛𝑓

(𝜌𝑐𝑝)
𝑛𝑓

 (13) 

where 𝑘𝑛𝑓 is the thermal conductivity of the nanofluid 

and this parameter is determined for the spherical nano-

particles according to the Maxwell-Garnetts (Maxwell, 

1904) model as: 

 
𝑘𝑛𝑓

𝑘𝑓
=

(𝑘𝑝+2𝑘𝑓)−2𝜙(𝑘𝑓−𝑘𝑝)

(𝑘𝑝+2𝑘𝑓)+𝜙(𝑘𝑓−𝑘𝑝)
 (14) 

The effective dynamic viscosity of the nanofluid is 

based on the Brinkman (1952) model and it is given by:  

 𝜇𝑛𝑓 =
𝜇𝑓

(1−𝜙)2.5 (15) 

where 𝜇𝑓 is the viscosity of the base fluid. 

Introducing the following dimensionless variables:  

 𝑋 = 𝑥
𝐿⁄ , 𝑌 =

𝑦
𝐿⁄ , 𝑈 = 𝑢𝐿

𝛼𝑓
⁄ , 𝑉 = 𝑣𝐿

𝛼𝑓
⁄ ,  

 𝜏 =
𝛼𝑓𝑡

𝐿2⁄ , 𝑃 =
𝑝𝐿2

𝜌𝑛𝑓𝛼𝑓
2, 𝜃 =

𝑇−𝑇𝑐

Δ𝑇
, Δ𝑇 =

𝑞´´𝐿

𝑘𝑓
 (16) 

Substituting Eq. (16) into Eqs. (5)- (8), the following di-

mensionless forms of the governing equations are ob-

tained: 

 𝐷𝑋
𝛼𝑈 + 𝐷𝑌

𝛼𝑉 = 0 (17) 

 𝐷𝜏
𝛽

𝑈 + 𝑈𝐷𝑋
𝛼𝑈 + 𝑉𝐷𝑌

𝛼𝑈 =  −𝐷𝑋
𝛼𝑝 +                

 
𝜇𝑛𝑓

𝜌𝑛𝑓𝛼𝑓
(𝐷𝑋

𝛼(𝐷𝑋
𝛼𝑈) + 𝐷𝑌

𝛼(𝐷𝑌
𝛼𝑈)) (18) 

 𝐷𝜏
𝛽

𝑉 + 𝑈𝐷𝑋
𝛼𝑉 + 𝑉𝐷𝑌

𝛼𝑉 =  −𝐷𝑌
𝛼𝑝 + 

 
𝜇𝑛𝑓

𝜌𝑛𝑓𝛼𝑓
(𝐷𝑋

𝛼(𝐷𝑋
𝛼𝑉) + 𝐷𝑌

𝛼(𝐷𝑌
𝛼𝑉)) +

(𝜌𝛽)𝑛𝑓

𝜌𝑛𝑓𝛽𝑓
𝑅𝑎Pr𝜃 (19) 

 𝐷𝜏
𝛽

𝜃 + 𝑈𝐷𝑋
𝛼𝜃 + 𝑉𝐷𝑌

𝛼𝜃 =             

 
𝛼𝑛𝑓

𝛼𝑓
(𝐷𝑋

𝛼(𝐷𝑋
𝛼𝜃) + 𝐷𝑌

𝛼(𝐷𝑌
𝛼𝜃)) (20) 

where 

 Pr =
𝑣𝑓

𝛼𝑓
, 𝑅𝑎 =

𝑔𝛽𝑓𝐿3Δ𝑇

𝑣𝑓𝛼𝑓
, Δ𝑇 =

𝑞´´𝐿

𝑘𝑓
 

are the Prandtl number, the Rayleigh number and the 

temperature difference, respectively. Further, the dimen-

sionless boundary conditions for Eqs. (18-20) are ex-

pressed as: 

𝑌 = 0, 𝑈 = 𝑉 = 0,  
𝜕𝜃

𝜕𝑌
=

𝑞´´

𝑘𝑛𝑓

, (𝐷 − 0.5𝐵)  ≤ 𝑋 ≤  (𝐷 + 0.5𝐵) 

𝜕𝜃

𝜕𝑌
= 0, otherwise. 

for 𝑌 = 𝐿 and 0 ≤ 𝑋 ≤ 1 

𝑈 = 𝑉 = 0, 𝜃 = 0 

for 𝑋 = 𝐿 and 0 ≤ 𝑌 ≤ 1 

𝑈 = 𝑉 = 0, 𝜃 = 0 

for 𝑋 = 0 and 0 ≤ 𝑌 ≤ 1 

 𝑈 = 𝑉 = 0, 𝜃 = 0 (21) 

The local Nusselt number is defined as: 

 𝑁𝑢𝑠 =
1

(𝜃)ℎ𝑒𝑎𝑡 𝑠𝑜𝑢𝑟𝑐𝑒
 (22) 

and the average Nusselt number is defined as: 

 𝑁𝑢𝑚 = (
1

𝐵
∫ 𝑁𝑢𝑠𝑑𝑋

𝐷+0.5𝐵

𝐷−0.5𝐵
)

𝑌=0
 (23) 

Equations (17)-(20) with the boundary conditions 

(21) are solved numerically using the finite difference 

method (FDM). The theory of the conformable fractional 

derivatives is invoked in the Eqs. (17)-(20) then the for-

ward difference approach is applied for the first order de-

rivatives of the time and space while the second deriva-

tive is treated using the central difference approach. The 

resulting algebraic system is solved using the successive 

under relaxation (SUR) method and a relative error of or-

der 10−6 is used as a convergence criteria.  

C. Results and discussion 

In this section, demonstration of the obtained results is 

presented. Here the governing parameters are considered 

in wide ranges, namely, the time fractional derivatives 

order 𝛽 is vried from 0.95 to 0.8, the space fractional de-

rivatives order α is varied from 1.0 to 0.75 and the refer-

enced case is considered as 𝜑 = 0.04, 𝐷 = 0.5, 𝑅𝑎 =
3 × 105, 𝐵 = 0.4, 𝛽 = 0.95.   

Table 2 contains values the average Nusselt number 

for different values of the time and its fractional deriva-

tives order  𝛽 The table revealed that impacts of 𝛽 is sig-

nificant at the low values of 𝜏𝑚𝑎𝑥  and this effect is re-

duced as  𝜏𝑚𝑎𝑥  is grown. Also, for all values of 𝜏𝑚𝑎𝑥 , the 

reduction in 𝛽 causes a diminution in values of 𝑁𝑢𝑚.  

In Fig. 2, maps of the flow features (streamlines) and 

temperature distributions (isotherms) for the variations of  
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𝒂) 𝜶 = 𝟏 𝜶 = 𝟎. 𝟗𝟓 

 

b) 𝜶 = 𝟏 

 

𝜶 = 𝟎. 𝟗𝟓 

 

𝒂) 𝜶 = 𝟎. 𝟗 

 

𝜶 = 𝟎. 𝟖𝟓 

 

b) 𝜶 = 𝟎. 𝟗 

 

𝜶 = 𝟎. 𝟖𝟓 

 

𝒂) 𝜶 = 𝟎. 𝟖 

 

𝜶 = 𝟎. 𝟕𝟓 

 

b) 𝜶 = 𝟎. 𝟖 

 

𝜶 = 𝟎. 𝟕𝟓 

 

𝒂) 𝜶 = 𝟎. 𝟕 

 

b) 𝜶 = 𝟎. 𝟕 

 
Fig. 2. a- Streamlines and b- Isothermal for Cu-water at 𝜏 = 0.15, 𝜑 = 0.04, 𝐷 = 0.5, 𝐵 = 0.4, 𝑅𝑎 = 3 × 105, 𝛽 = 0.95. 

the space fractional derivatives order 𝛼 are depicted. 

Note, the fractional derivatives are taken on the deriva-

tives with respect to 𝑋 and 𝑌.  The results disclosed that 

activity of the flow is reduced as  𝛼 is reduced. Also, the 

flow is concentrated in the left hand side of the enclosure 

as 𝛼 is decreased. In the same context, there is a thermal 

zone near the heat source is noted for all values of 𝛼 while 

as 𝛼 is decreased, both of the temperature distributions 

and maximum values of the temperature are decreased.  

Figures 3-6 show profiles of the local Nusselt number 

along the heat source, horizontal and vertical velocity 

components at the enclosure mid-section and the average 

Nusselt number for the different values of the time and 

space fractional derivatives orders 𝛼 and 𝛽. The figures 

revealed that the local Nusselt number is enhanced as ei-

ther 𝛼 or 𝛽 is reduced due to the inverse relation between 

the local Nusselt number and the maximum temperature 

(Eq. 22). In addition, there are maximum values for the 

vertical velocity component at the center line of the en-

closure and these values are reduced as 𝛼 decreases. Fur-

ther, values of the average Nusselt is enhanced as the 

space fractional derivatives order 𝛼 is diminished. 

III. CONCLUSIONS 

Unsteady natural convective flow and thermal fields in a 

square enclosure under impacts of the fractional deriva-

tives orders on the time and space was performed in this 
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paper. Definitions and theory of the conformable frac-

tional derivatives are invoked in this study and the finite 

difference method is applied to solve the dimensionless 

governing equations. The important findings from this in-

vestigation are summarized as:   

• The streamlines concentrated gradually in the left 

side of the cavity and the isotherms increases near 

the bottom wall. 
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Fig. 3. Profiles of the local Nusselt number for Cu-water 

at 𝜏 = 0.15, 𝜑 = 0.04, 𝐷 = 0.5, 𝐵 = 0.4, 𝑅𝑎 = 3 × 105.  

0.0 0.2 0.4 0.6 0.8 1.0

-5

-4

-3

-2

-1

0

1

2

3

4

5

 =

 =

 =

 =

 =

 =

 

 

U
(X

=
0

.5
)

Y  
Fig. 4. Profiles of the local Nusselt number for Cu-water 

at  𝜑 = 0.04, 𝐷 = 0.5, 𝐵 = 0.4, 𝑅𝑎 = 3 × 105, 𝛽 = 0.95.  
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for Cu-water at  𝜑 = 0.04, 𝐷 = 0.5, 𝐵 = 0.4, 𝑅𝑎 =
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Fig. 6. Variation of the average Nusselt number for Cu-water 

at 𝜏 = 0.15, 𝜑 = 0.04, 𝐷 = 0.5, 𝐵 = 0.4, 𝑅𝑎 = 3 × 105.  

Table 2. Values of the average Nusselt 𝑁𝑢𝑚 for variations of 

𝜏𝑚𝑎𝑥   and 𝛽 at  𝜑 = 0.04, 𝐷 = 0.5, 𝐵 = 0.4, 𝑅𝑎 = 3 × 105,  
𝛽 = 0.95.  

 

• Effects of the time fractional order are clear in case 

of the low values of the time.  

• Local and average Nusselt numbers are enhanced as 

either the time fractional derivatives order or the 

space fractional derivatives order decreases. 

• The horizontal velocity increases with the increase 

in the  fractional parameter α 

• The horizontal velocity in the right hand side of the 

enclosure is greater than those of the left hand side 

and this explained the movement of the fluid in the 

enclosure from the right to the left. 

• The variations  in the vertical velocity were  sym-

metric along the mid-section of the enclosure 

• The average Nusselt number is increased when α is 

reduced, regardless values of the Rayleigh number. 

• The fluid became more stable in left hand side. 
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