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Abstract–– The sparse network spectrum 

clustering problem is studied in this paper. It 

tries to analyze and improve the sparse network 

spectrum clustering algorithm from the main 

feature pair algorithm. The main feature pair 

algorithm in the matrix calculation is combined 

with the spectral clustering algorithm to explore 

the application of the main feature pair algorithm 

on the network adjacency matrix. The defects of 

traditional main features are analyzed when the 

algorithm Power is used on the network of special 

structural features, and the advantages of the 

new algorithm SII algorithm is proved. The 

sparse network spectral clustering algorithm in 

this paper is based on the Score algorithm, and 

the main features of the algorithm are refined, 

analyzed and improved. 

Keywords–– sparse network spectrum; 

clustering; dominant eigenvector; eigenvalue. 

I. INTRODUCTION 

Community discovery is an important part of social 

network research. Spectral clustering is used widely 

for its low computational complexity and efficient 

recognition of nonlinear clusters (Barucca et al., 

2016) The Score algorithm is a spectral clustering 

algorithm that can be used for sparse networks with 

large differences in node degrees. The method of 

standardizing the feature space by the adjacency 

matrix main feature vector can achieve a more stable 

clustering output (Lee et al., 2016a). However, the 

choice of its algorithm has not been studied as the 

dominant eigenvector of the core part of the Score 

algorithm. That is to say, the good output of Score is 

based on the premise that its feature vector is 

accurate and known (Lee et al., 2016b). How the 

different algorithms of feature vector and eigenvalue 

affect Score will be the focus of this paper. 

II. STATE OF THE ART 

The spectral clustering algorithm calculates the 

similarity between the data points first thereby 

constructing a similarity matrix and calculating the 

eigenvalues and eigenvectors of the corresponding 

matrix (such as the adjacency matrix or the 

Laplacian matrix) unlike the general clustering 

method, which uses all sample data as the basis of 

clustering (Tavşanoğlu, 2016). Then, the appropriate 

feature vector is selected to construct the feature 

vector matrix to complete the clustering according to 

different segmentation criteria. It can be said that 

spectral clustering is an algorithm for clustering 

sample data based on the feature vector structure of 

the sample similarity matrix (Wei et al., 2016).  

It is especially important in the whole spectral 

clustering algorithm for the calculation of similar 

matrix eigenvectors, especially the calculation of the 

first few dimensional eigenvectors of the matrix. 

Matrix eigenvalue decomposition is one of the most 

fundamental and important aspects of matrix theory, 

and its research has been around for a long time 

(Mondal et al., 2016). Up to now, matrix 

eigenvalues, eigenvectors, eigenfunctions and maps 

are still hot topics in the field of matrix algebra. The 

research on matrix eigenvalue problem mainly 

includes the distribution of matrix eigenvalues, 

spectral estimation, eigenvalue upper and lower 

bound estimation and approximate solution of 

high-order matrix eigenvalues (Rammohan et al., 

2016).  

The matrix feature pairs refer to the matrix 

eigenvalues and their corresponding eigenvectors 

(Gusrialdi et al., 2017). The second is the main 

feature pair algorithm, such as the most traditional 

algorithm, the power method, the minimum 

eigenvalue of the computational matrix and the 

inverse power method of the corresponding 

eigenvectors, Rayleigh quotient iteration and 

translation method for the acceleration of power 

method (Lekić, 2017).  

Therefore, it is often not necessary to calculate 

all pairs of matrix features, and it is only necessary 

to give an estimate for the feature pairs of a certain 

number of dimensions before. In addition, the 

algorithm for solving the first feature pair is 

extended, and can also be used to calculate the first k 

feature pairs of the corresponding matrix iteratively. 

Therefore, the study of the main feature algorithm 

plays an important role in the spectral clustering 

algorithm.  
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III. METHODOLOGY 

A. Origin Shift Method (SPI, Shifted Power 

Iteration) 

Since the convergence speed of the power method 

depends mainly on the size of 
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always less than 1, and the smaller the value, the 

faster the convergence speed be. So, the translation 

method can be used, that is, apply the power method 

to A. If   is properly selected, the modulus of the 

dominant eigenvalue of the matrix and the modulo 

of other eigenvalues are larger. That is, 

1

2

1

2

-

-








 , 

which serves the purpose of acceleration.  

The translational inverse power method has the 

following convergence properties: 
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Where 
j  is the eigenvalue closest to the 

matrix distance μ, and 
ja  is its corresponding 

eigenvector. It should be noted that the performance 

of the algorithm depends on the selection of the 

parameter μ. If μ is too small, the acceleration effect 

is not obvious; if μ is too large, the order of the size 

of the feature roots may be changed, so that the 

number of iterations does not decrease, and even the 

case of convergence to other feature roots occurs. 
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B. SQI (Specific Rayleigh quotient iteration) 

The Rayleigh quotient is used in the SQI 

algorithm as the eigenvalue approximation in 

each iteration, i.e. 
)(kz , to translate the matrix.  

 

It should be noted that the results of Rayleigh 

quotient iterations are more dependent on the 

choice of initial values. 
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When the initial value 
)0(z  is far from the 

actual dominant eigenvalue of the matrix and is 

closer to other eigenvalues, the convergence will 

fall into local optimum. That is, 
)(kz will 
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converge to the eigenvalue closest to the initial 

value, so the result obtained by the algorithm is 

not necessarily the main feature pair of the 

matrix.  
 

C. Sll (Shifted inverse iteration) 

The Sll algorithm is basically similar to the SQI 

algorithm, and the difference between the two is 

only the calculation method of the iterative 

term
)(km .  

The Sll algorithm no longer uses Rayleigh 

quotient as an iteration term, but instead makes 
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value of the maximum value of the ratio of the 

elements of 
)(kAx  and 

)(kx .  

For the non-negative irreducible matrix A, 

there is the Collatz-Wielandt formula:  
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The new mode calculation z(k) is always larger 

than the true main eigenvalue  in the iterative 

process, and monotonically decreasing to 

converge to , so there is no case of error 

convergence caused by changing the order of 

eigenvalues.  

IV. RESULT ANALYSIS AND DISCUSSION 

A. Experimental environment and data set 

introduction 

The experimental data sets used in this article are 

all real network data sets. This group of 

experiments used a number of benchmark data 

sets, namely the Karate Club Network, the 

Canadian Dolphin Social Network, the 2004 US 

political book purchase network, the Facebook 

site's 0-node-centric ego network, the 2006 

Network of Network Scientists, the e-mail (core) 

network among members of a European research 

institution, the 2005 American politician blog 

network, the Facebook website with a 107-node 

individual network, and the US Western Power 

Grid.  

Each network is undirected and has no right, 

and the number of nodes N, the number of sides 

M, the network density s, and the aggregation 

coefficient C respectively included in each 

network are as shown in Table 1. The calculation 

method of the network density adopts the ratio of 

the number of edges existing actually in the 

network to the maximum possible number of 

sides, namely:  

)1(
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

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Table 1 basic information of dataset 

Data set Name 
Number of 

nodes 

Edge 

number 
S C 

Karate club Karate 34 78 13.90% 0.285 

Canadian dolphin data set Dolphin 62 159 8.40% 0.286 

American political book 

purchase in 2004 
Books 105 441 8.07% 0.488 

American university football 

team 
Football 115 613 9.35% 0.403 

Collaboration data of network 

scientists in 2006 
Cooper ation 246 583 1.93% 0.503 

0-ego network of Facebook 

dataset 
Oego 324 2514 4.80% 0.426 

E-mail interaction between 

members of a European 

research institution (core) 

Email 986 16064 3.18% 0.267 

107-ego network of Facebook 

dataset 
107ego 1034 26749 5.00% 0.505 

2005 American statesman blog 

network 
Blog 1222 16714 2.24% 0.226 

Topological structure of 

western United States Power 

Network 

Pewer 4941 6594 0.05% 0.034 

 

B. Comparison of Algorithms for Computing 

Vectors of Feature Vectors 

Experts and scholars have focused on the 

calculation of eigenvalues for the research and 

improvement of matrix main feature pair 

algorithms for a long time. Since the feature 

vector is used for clustering in spectral clustering, 

the dominant eigenvector is also used to 

normalize the feature space in the Score 



Latin American Applied Research 48:323-328 (2018) 

326 

algorithm. Therefore, the analysis and application 

of the feature pair algorithm are more suitable for 

spectral clustering. This section discusses the 

performance of different algorithms in computing 

feature vectors. 

The previous section mentions that the power 

method has a problem of slow convergence when 

the second eigenvalue is closer to the first 

eigenvalue. If re-examining the above algorithm 

from the perspective of feature vector, the second 

norm normalized power method, Rayleigh 

quotient acceleration and another Aitken 

acceleration method only change the calculation 

method of the approximate eigenvalue at each 

iteration. The calculation method of the feature 

vector is actually the same, so the number of 

iterations required to reduce the convergence of 

the feature root reaches the acceleration feature 

root convergence, and the calculation accuracy of 

the feature vector is sacrificed.  

The algorithm is improved in order to 

measure the convergence of the feature vector 

and eliminate the influence of the feature root 

calculation method on the number of 

convergences of the algorithm. It modifies the 

convergence condition in the algorithm from the   

difference 0 k  between the iterative 

computational eigenvalues to the difference 

0 k  between the eigenvectors. The cosine 

similarity of the calculated eigenvectors in each 

iteration is selected to measure the closeness of 

the eigenvectors in the two iterations. Since the 

eigenvectors calculated by the algorithm are all 

standardized, it is only necessary to calculate the 

vector inner product, and then calculate the 

absolute value of the value and the difference 

k  of 1. 

             (3) 

Thus, the smaller the k , the closer the 

eigenvector estimates in each iteration and the 

more convergent be.  

1. Number of iterations 

As can be seen in Table 2, it is reflected the 

number of iterations of each data set under 

different eigenvector convergence conditions. It 

can be seen that under each convergence 

condition, as the ratio of the second eigenvalue to 

the main eigenvalue increases, the number of 

convergences of the power method increases, and 

the growth rate gradually increases. The 

convergence times of each data set under 

different convergence conditions are compared. 

As 0  decreases, the stricter convergence 

condition, the more convergence times is required 

by the power method.  
In Table 3 is illustrated the number of 

iterations of the SQI algorithm and the SII 

algorithm for each data set under different 

eigenvector convergence conditions. It can be 

seen that the number of iterations of the two 

algorithms is relatively close. Compared with the 

table, it is found that both algorithms have fewer 

iterations than the power method, regardless of 

whether the second eigenvalue and the first 

eigenvalue are close or not.  

This reduction is especially noticeable when 

the second eigenvalue is close to the first 

eigenvalue, and both algorithms reduce the 

number of iterations on each data set to less than 

10.  

At the same time, unlike the power method, 

the number of convergences increases 

significantly with the strict convergence 

conditions.  

As 0  decreases, the number of iterations of 

the two algorithms remains the same or increases 

by one. Then, under the convergence conditions 

of different primary and secondary eigenvalues 

and different eigenvectors, the acceleration of the 

two new algorithms relative to the power method 

is obvious. In the time-consuming of the 

algorithm, the power method only needs to 

complete the basic matrix vector multiplication in 

each iteration, and the SQI and SII algorithms 

need to calculate the matrix equation, so each 

iteration takes a long time.  

However, when the primary and secondary 

feature roots are close, the new algorithm still 

shows its advantages. For example, in the Books 

network, the number of convergences 1610k  

required to calculate the feature vector using the 

power method is as high as 520 times, and the 

number of iterations of the SQI and SII 

algorithms is less than 10 times. Since the 

number of network nodes is small, in order to 

reduce the error, we take the average time of 10 

algorithm runs for comparison. The time required 

for the power method is 0.127 s, while the SII and 

SQI algorithms only need 0.022 s and 0.031 s. 

2. Calculation accuracy 

The following section focuses on the accuracy 

of the algorithm for the calculation of matrix 

feature vectors. We choose the principal 

eigenvector of the QR iterative calculation as the 

standard value 0v , and calculate the error   

between the main eigenvector and the standard 

value calculated by each algorithm, and the 

calculation method is the same as (4-1). 
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Table 2. Iteration times of power law under convergence conditions of different eigenvectors. 

Data set 
1

2




 510k  

1010k  
1610k  

Oego 0.4634 7 14 23 

Email 0.4786 6 12 21 

107ego 0.5018 8 16 26 

Karate 0.7400 14 28 47 

Cooperation 0.7956 18 42 72 

Blog 0.8091 15 42 75 

Dolphin 0.8407 18 51 93 

Football 0.8607 11 49 98 

Books 0.9738 46 263 520 

Table 3. Iteration times of SQI algorithm and SII algorithm under different eigenvectors convergence 

conditions. 

Data set 
510k  

1010k  
1610k  

SQI SII SQI SII SQI SII 

Oego 7 5 7 6 8 7 

Email 6 6 7 7 9 8 

107ego 6 5 6 6 7 7 

Karate 4 5 5 6 5 7 

Cooperation 6 6 7 7 8 7 

Blog 7 7 7 8 8 9 

Dolphin 5 5 6 6 6 7 

Football 3 4 4 5 4 6 

Books 7 6 7 7 8 9 

 

Table 4. The  1610k convergence time of each algorithm. 

Data set 
Number of 

nodes

 

1

2




 pow SQI SII 

Oego 324 0.4634 0.045 0.37 0.322 

Email 986 0.4786 0.276 11.009 9.721 

107ego 1034 0.5018 0.363 8.334 8.747 

Karate 34 0.7400 0.005 0.02 0.027 

Cooperation 246 0.7956 0.058 0.171 0.138 

Blog 1222 0.8091 3.093 15.798 17.185 

Dolphin 62 0.8407 0.006 0.009 0.888 

Football 115 0.8607 0.023 0.038 0.023 

Books 105 0.9738 0.127 0.022 0.031 

 

Table 5. The 
510k Calculation of eigenvector and standard error by power method and SII 

algorithm. 

Data set Pow Sll 

Oego 61042.3   161044.4   

Email 61039.1   141073.1   

107ego 61053.7   
161088.8   

Karate 51079.5   161033.3   

Cooperation 41015.1   161044.4   

Blog 41055.1   16101   

Dolphin 41045.2   151088.5   

Football 41027.1   161044.4   

Books 21036.1   131007.8   
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Table 5 compares the error between the 

eigenvector and the standard value calculated by 

the power method and the SII algorithm when 
510k .  
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It can be seen that for each data set, the 

eigenvector error calculated by the SII algorithm 

is smaller than the power method. 

When
510k , the magnitude of the error 

between the feature vector calculated by the 

power method and the standard value is greater 

than 10-6, and the eigenvector error of the power 

method increases, and the maximum error 

reaches 10-2 on the Books network as the ratio of 

the second eigenvalue to the first eigenvalue 

increases. In contrast, the SN calculates the 

eigenvector and the standard value error is much 

smaller, both less than 10-13. It can be seen that 

the accuracy comparison of the eigenvectors 

calculated by the power method depends on the 

convergence condition, while the SII algorithm is 

not. When the convergence condition is lost, the 

convergence accuracy can be achieved.Then we 

analyze the convergence trend of the algorithm in 

each iteration. It is found that when both the 

power method and the SII algorithm select the 

unit vector as the initial iteration vector, the same 

phenomenon occurs on each data set. That is, in 

the initial several (generally 2~3) iterations, the 

eigenvectors calculated by the power method are 

closer to the standard value than the SII 

algorithm. The proximity is overridden by the SII 

algorithm after several iterations. The SII 

algorithm approximates the exact value at a faster 

convergence rate, and the accuracy is higher than 

the power method under the same number of 

iterations.  

V. CONCLUSIONS 

The new algorithms SQI and SII algorithm get rid 

of the dependence of the convergence speed of 

the algorithm on the proximity of the primary and 

secondary eigenvalues, and reduce the number of 

convergences greatly. In the experiment, the 

convergence is completed with less than 10 

iterations on each data set, and the calculation of 

accuracy of the eigenvalue and eigenvector is 

also improved greatly. There is only a 

convergence error of 10-16 under the 

convergence of ε0=10-6. Between the two, the 

number of iterations is quite the same, often one 

or two iterations. The convergence effect of the 

SQI algorithm is unstable, and error convergence 

occurs in a matrix with a higher dimension 
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