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Abstract A non-similar boundary layer analysis 

is presented to examine the natural convection flow 

over a truncated cone with fixed apex half angle; 

pointing downwards in a nanofluid saturated porous 

medium contains gyrotactic microorganisms. A suita-

ble coordinate transformation is performed, and the 

obtained non-similar equations are solved by fourth 

order Runge–Kutta method technique coupled with 

shooting scheme. The effects of the thermophoresis 

parameter, Brownian parameter, Lewis number, bio-

convection Peclet number, bioconvection Lewis num-

ber, bioconvection Rayleigh number and buoyancy 

ratio on the reduced Nusselt, Sherwood and density of 

motile microorganisms numbers have been studied. A 

comprehensive numerical computation is carried out 

for various values of the parameters that describe the 

flow characteristics.  

Keywords Bioconvection, truncated cone, gyro-

tactic microorganisms, nanofluid, boundary layer. 

I. INTRODUCTION 

Heat transfer is an important process in Physics and En-

gineering, since the conventional heat transfer in fluids 

such as water, mineral oil and ethylene glycol are com-

pared to those of most solids.  Convective heat transfer 

can be enhanced passively by changing flow geometry, 

boundary conditions, or by enhancing thermal conductiv-

ity of the fluid.  

Consequently improvements in heat transfer charac-

teristics will improve the efficiency of many processes. 

A nanofluid is a new class of heat transfer fluid that con-

tains a base fluid and solid nanoparticles of diameter 1–

100 nm (Das et al., 2007; Anoop et al., 2009; Cheng, 

2012; Abu-Nada, 2008; Kakać and Pramuanjaroenkij, 

2009; Mahdy and Ahmed, 2012; Behseresht et al., 2014; 

Khanafer et al., 2003). The use of additives is a technique 

applied to enhance the heat transfer performance of base 

fluids. Nanofluids have been shown to increase the ther-

mal conductivity and convective heat transfer perfor-

mance of the base liquid. A comprehensive survey of 

convective transport was presented by Buongiorno 

(2006). The author discussed seven possible mechanisms 

associating convection of nanofluids through movement 

of nanoparticles in the base fluid. Among the investigated 

mechanisms, thermophoresis and Brownian diffusion 

were found important.  Thermophoresis acts against tem-

perature gradient, meaning that the particles tend to move 

from hot regions to cold ones. In addition, the Brownian 

motion tends to move the particles from high concentra-

tion areas to low concentration areas. Similarity solution 

to viscous flow and heat transfer of nanofluid over non-

linearly stretching sheet was investigated by Hamad and 

Ferdows (2012). Nield and Kuznetsov (2010) studied the 

Cheng–Minkowycz problem for natural convective 

boundary-layer flow in a porous medium saturated by a 

nanofluid considering the effects of Brownian motion 

and thermophoresis. Khan and Pop (2011) examined the 

free convection boundary layer flow past a horizontal flat 

plate embedded in a porous medium filled with a 

nanofluid.  

Furthermore, Bioconvection has many applications in 

biological systems and Biotechnology. The term biocon-

vection refers to a macroscopic convection motion of 

fluid caused by the density gradient created by collective 

swimming of motile microorganisms (Becker et al., 

2004; Geng and Kuznetsov, 2004; Hillesdon and Pedley, 

1996; Childress et al., 1975). These self-propelled motile 

microorganisms upgrade the density of the base fluid by 

swimming in a particular direction, thus causing biocon-

vection. On the other hand, the phenomenon of biocon-

vection in nanofluid convection is driven by the presence 

of denser microorganisms accumulating on the surface of 

lighter water. As the heavier microorganisms sink into 

the water, they are replenished by up swimming micro-

organisms, thus establishing bioconvection process 

within the system. The process is a meso-scale phenom-

enon in which the motion of motile microorganisms in-

duces a macroscopic motion (convection). Unlike the 

motile microorganisms, the nanoparticles are not self-

propelled.  Thus, the motion of the motile microorgan-

isms is independent of the motion of nanoparticles. Add-

ing microorganisms to a nanofluid increases its stability 

as a suspension Kuznetsov (2011a), and could avoid na-

noparticles from agglomerating and aggregating. Aziz et 

al. (2012) have numerically studied the free convection 

boundary layer flow past a horizontal flat plate in 

nanofluid containing gyrotactic microorganisms, and 

they found that the bioconvection parameters have 

strongly influenced the mass, heat, and motile microor-

ganism transport rate. A detailed discussion (Khan et al., 

2013; 2014; Kuznetsov, 2011b; Mutuku and Makinde, 

2014) of bioconvection in suspensions of oxytactic bac-

teria is made for the onset of bioconvection in a suspen-

sion of gyrotactic/oxytactic microorganisms in different 
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cases. According to the investigations mentioned above, 

the main purpose of the present contribution is to study 

the problem of boundary layer natural convection flow 

due to gyrotactic microorganisms along a vertical trun-

cated cone in a porous medium saturated by a nanofluid. 

Following Buongiorno (2006) model, the effects of 

Brownian motion and the thermophoresis are included 

for the nanofluid.  

II. MATHEMATICAL FORMULATION  

We consider the boundary layer flow of free convection 

due to gyrotactic microorganisms over a downward-

pointing vertical truncated cone of half angle A immersed 

in a nanofluid saturated porous medium. The origin of the 

coordinate system is placed at the vertex of the full cone, 

with x being the coordinate along the surface of the cone 

measured from the origin and y being the coordinate per-

pendicular to the conical surface, as shown in Fig. 1.  The 

surface of the cone is maintained at a constant tempera-

ture Tw, which is different from the porous medium tem-

perature sufficiently far from the surface of the cone T.  

The nanoparticle volume fraction and the density of mo-

tile microorganisms on the surface of the cone is Cw, Nw 

and the ambient value of the nanoparticle volume fraction 

and the density of motile microorganisms is denoted by 

C, N.  The fluid properties are assumed to be constant 

except for density variations in the buoyancy force term.  

In addition, the nanoparticle suspension is assumed to be 

stable (there is no nanoparticle agglomeration). The pres-

ence of nanoparticles is assumed to have no effect on the 

direction in which microorganisms swim and on their 

swimming velocity. This is a reasonable assumption if 

the nanoparticle suspension is dilute (nanoparticle con-

centration is less than 1%). Bioconvection induced flow 

only takes place in a dilute suspension of nanoparticles; 

otherwise a large concentration of nanoparticles would 

result in a large suspension viscosity, which would sup-

press bioconvection. Assuming that the thermal and na-

noparticle volume fraction boundary layers are suffi-

ciently thin compared with the local radius, the governing 

equations for the conservation of total mass, momentum, 

energy, and nanoparticles within the boundary layer near 

the vertical truncated cone can be written in two-dimen-

sional Cartesian coordinates as  
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Fig. 1. Schematic view and the coordinate system. 
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In previous equations u and v are the velocity compo-

nents along the x and y axes,  is the dynamic viscosity 

of the fluid, ,  are the thermal diffusivity and volumet-

ric expansion coefficient, f is the density of the base 

fluid, p is the density of nanoparticles, m is the micro-

organism density,  is the average volume of microorgan-

isms; Ŵ is the constant maximum cell swimming speed, 

K is the Darcy permeability of the porous medium,  is 

the porosity; D, D , D* are the Brownian, thermophoretic 

diffusion and diffusivity of microorganisms coefficients, 

=(c)p/(c)f is the ratio of effective heat capacity of the 

nanoparticle material to the heat capacity of the fluid; 

C=Cw-C.  In our problem, the dimensional boundary 

conditions are:  
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Because the boundary layer thickness is small, the lo-

cal radius to a point in the boundary layer r can be repre-

sented by the local radius of the truncated cone,  

r = x sinA.  
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Upon using these variables and eliminating the pres-

sure P from Eqs. (2) and (3) using cross-differentiation, 

the basic equations of the boundary layer for the problem 

under consideration can be written in non-dimensional 

form as  
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Subject to the dimensionless boundary conditions  
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The primes denote differentiation with respect to .  

In addition, in Eqs. (8)–(12), Ra is the thermal Rayleigh 

number, Rb is the bioconvection Rayleigh number, Nr is 

the buoyancy ratio parameter, Nt is a modified diffusivity 

ratio parameter (somewhat similar to the Soret parameter 

that arises in cross-diffusion phenomena in solutions), Nb 

is the Brownian motion parameter, the parameter Le is the 

traditional Lewis number (the ratio of the Schmidt num-

ber to the Prandtl number Pr), Lb is the bioconvection 

Lewis number, Pe is the bioconvection Péclet number,  

is the bioconvection constant. Furthermore, these dimen-

sionless parameters are defined as  
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The results of practical interest in many applications 

are the reduced Nusselt number Nux, the local Sherwood 

number Shx and the local density number of the motile 

microorganisms Nnx which are defined as  
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where qw, qm and qn are the wall heat, the wall mass and 

the wall motile microorganisms fluxes, respectively, and 

they are defined as follows 
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Using variables (8), (14) and (15), we obtain  

Table 1. Comparison of values of -´(,0) for various values 

of  with Nt=Nb=0 and Nr=0. 

 Cheng et al., (1985) Yih (1999) Present 

0 0.4437 0.4439 0.44391 

0.5 0.5412 0.5285 0.54135 

1 0.5991 0.5807 0.59913 

2 0.6572 0.6373 0.65732 

6 0.7219 0.7123 0.72199 

10 0.7391 0.7330 0.73913 

20 0.7532 0.7500 0.75325 

40 0.7607 0.7592 0.76076 

 0.7685 0.7686 0.76847 
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The reduced local Nusselt, Sherwood and local den-

sity of the motile microorganisms numbers can be written 

as (Mutuku and Makinde, 2014):  
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III. NUMERICAL METHOD 

The boundary layer over the truncated cone, subjected to 

density of motile microorganisms, is described by the 

system of partial differential Eqs. (9)–(12), and its bound-

ary conditions (13). The resulting system is numerically 

solved using fourth order Runge–Kutta method with 

symmetric estimation of F´(,0), ´(,0), ´(,0) and 

´(,0) by the shooting technique. The basic step size 

used for the calculation is =0.01. This value was ar-

rived at after performing many numerical experiments to 

access grid independence. In the mentioned numerical 

method, an iteration process is employed and continued 

until the desired results are obtained within the following 

convergence criterion   

  ,10 6

1



  old

i

new

i ff  

where f stands for F, ,  or  and i refers to space coor-

dinate, i.e. a maximum relative error of 10-6 is used as the 

stopping criteria for the iterations. An important criterion 

for the success of this numerical approach is to choose an 

appropriate finite value of .  Thus, in order to estimat-

ing the realistic value of , the solution process has 

started with initial guess value of , and the system of 

Eqs. (9)–(12) is solved subject to the boundary condi-

tions, Eqs. (13).  The value of  is updated and the so-

lution process is repeated until further changes (incre-

ment) in  did not change the values of results. In other 

words, the results are independent of the value of . The 

results show that the choice of =12 guarantees that all 

numerical solutions approach to their asymptotic values 
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correctly. In addition, to assess the accuracy of the solu-

tion, the present results are compared with the results ob-

tained by other researchers.  Table 1 shows the numerical 

values of -´(,0) for different values of  with Nr, Nt and 

Nb, the conditions for natural convection heat of a vertical 

truncated cone of Newtonian fluids in porous media with 

constant wall temperature. It is shown that the present re-

sults are in excellent agreement with the results reported 

by Cheng et al. (1985) and Yih (1999). 

IV. RESULTS AND DISCUSSION 

To obtain a clear insight of the behavior of rescaled ve-

locity, temperature, nanoparticle volume fraction and re-

scaled motile microorganisms distributions, a compre-

hensive numerical computation is carried out using the 

method described in the previous section for various val-

ues of governing parameters. The parameters are used to 

be 1Le10, 0.1Nt1.2, 0.6Nb1.1, 0.0.5, 

0.0Rb0.4, 0Nr0.4, 0.1Pe1.0 and 2Lb8.  

Figure 2 illustrates the variation of the dimensionless 

velocity for different values of (a) buoyancy ratio Nr and 

(b) bioconvection Rayleigh number. In the absence of bi-

oconvection parameter, the dimensionless velocity at the 

surface is found to be higher. It can be observed that the 

dimensionless velocity distribution decreases with an in-

crease in the buoyancy ratio and bioconvection Rayleigh 

number. The thermophoresis parameter Nt can be de-

scribed as the ratio of the nanoparticle diffusion, which is 

due to the thermophoresis effect, to the thermal diffusion 

in the nanofluid. According to Buongiorno (2006), the 

solid particles in the fluid experience a force in the direc-

tion opposite to the imposed temperature gradient. There-

fore, the particles tend to move from hot to cold. The ther-

mophoresis parameter is independent of the particle di-

ameter in the case of very small particles.  

 
Fig. 2. Velocity distribution for various values of (a) Nr (b) Rb. 

 
Fig. 3. Effect of the thermophoresis parameter on (a) Nnr (b) 

Nur and (c) Shr. 

Figure 3 depicts the effect of  thermophoresis param-

eter on the reduced (a) density number of the motile mi-

croorganisms, (b) Nusselt and (c) Sherwood numbers 

against  considering two cases namely, Rb=0.1 and 

Rb=0.4 . The figure reveals that increase in the thermo-

phoresis parameter decreases the reduced Nusselt num-

ber while increases both of the reduced density number 

of the motile microorganisms and Sherwood number. 

This is because of the fact that the thermophoresis force, 

which tends to move particles from the hot zone to the 

cold zone, increases with the increase in Nt, which results 

in that the increase in the thermophoresis force increases 

the nanoparticle volume fraction. Furthermore, the 

Brownian motion parameter can be described as the ratio 

of the nanoparticle diffusion, which is due to the Brown-

ian motion effect, to the thermal diffusion in the 

nanofluid. 

Therefore, it is expected that the Brownian motion pa-

rameter increases with an increase in the difference be-

tween the nanoparticle volume fractions at the wall and 

ambient. Based on the Einstein-Stokes equation 

(Buongiorno, 2006), the Brownian motion is propor-

tional to the inverse of the particle diameter. Hence, as 

the particle diameter decreases, the Brownian motion in-

creases. On the other hand, the increase in the Brownian 

motion parameter decreases the reduced Nusselt number 

but increase both of the reduced density number of the 

motile microorganisms and reduced Sherwood number.  

Again, the variation of reduced density of the motile 

microorganisms and Nusselt and Sherwood numbers 

against  for various values of buoyancy ratio Nr is illus-

trated in Fig. 5 (a,b,c). As it is observed, as Nr increases, 

both of reduced density of the motile microorganisms, 

Nusselt and Sherwood numbers decrease. 

 
Fig. 4. Effect of the Brownian motion parameter on (a) Nnr (b) 

Nur and (c) Shr. 

 
Fig. 5. Effect of the Buoyancy ratio parameter on (a) Nnr (b) 

Nur and (c) Shr. 
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Fig. 6. Effect of bioconvection Lewis number and bioconvec-

tion Peclet number on Nnr. 

 
Fig. 7. Effect of bioconvection Lewis number and bioconvec-

tion Peclet number on Nnr.

 
Fig. 8. Effect of Lewis number on (a) nanoparticle volume fraction (b) Shr. 

 

Variations of reduced density number of the motile 

microorganisms against  for different values of biocon-

vection Lewisand bioconvection Peclet numbers in Fig. 

6 (a, b). An increase in bioconvection Lewis number or 

Peclet number tends to increase reduced density number 

of the motile microorganisms. In addition as microorgan-

isms concentration difference parameter increases, the 

reduced density number of the motile microorganisms in-

creases, which is shown in Fig. 7(a), whereas the biocon-

vection Rayleigh number decreases reduced density 

number of the motile microorganisms Fig. 7 (b) . The in-

crease in the Lewis number increases the reduced Sher-

wood number. The effect of Lewis number on rescaled 

nanoparticle volume fraction and reduced Sherwood 

number is shown in Fig. 8 (a, b). As it is seen that, the 

concentration boundary layer thickness depends upon 

Lewis numbers and it decreases with increasing Lewis 

numbers. In fact, Brownian motion coefficient decreases 

with increasing transverse distance and due to this reason 

the rescaled nanoparticle volume fraction decreases rap-

idly for large Lewis numbers. In addition, with an in-

crease in Lewis number the reduced Sherwood number 

increases Fig. 8 (b). 

V. CONCLUSIONS 

Free convection boundary layer flow about a vertical per-

meable truncated cone embedded in a porous medium 

filled by a Newtonian nanofluid containing gyroytactic 

microorganisms is investigated numerically. The follow-

ing important results are drawn from our contribution:  

1. Both reduced density of motile microorganisms and 

Sherwood numbers increase with an increase in 

Brownian motion and thermophoresis but decrease 

as the buoyancy ratio parameter increases.  

2. The rescaled velocity depends strongly on these bio-

convection parameters.  

3. The reduced density of motile microorganisms num-

ber decreases with an increase in bioconvection 

Lewis and Peclet numbers, whereas it decreases with 

increasing bioconvection Rayleigh number. 
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