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Abstract Parameter estimation method can 

produce useful physical parameters in finding ab-

normal causes, but nonlinear model makes this 

method computationally intensive and non-robust 

for distillation scenario. In this paper, we propose a 

model decomposition based parameter estimation 

method for distillation column diagnosis purposes. 

Nonlinear first principles dynamic model is divided 

into some disjoint submodels through occurrence 

matrix analysis. The whole model is used to monitor 

distillation process and the submodel that gives the 

highest contribution to the generated residual is se-

lected to perform abnormal parameter estimation. 

Application results from stripping tower in the 

popular Tennessee Eastman challenge problem show 

that the model decomposition based diagnosis 

scheme is more time-saving and robust than pure 

nonlinear model based scheme. 

Keywords Model decomposition, Parameter es-

timation, Fault diagnosis, Distillation. 

I. INTRODUCTION 

Distillation is an important unit operation in chemical 

industry. Its minor operational condition change may 

cause low product quality, high energy consumption, 

and even catastrophic safety problems. Fault diagnosis 

technique can timely detect potential degradation trend 

of operational conditions (Verucchi et al., 2008), so it 

has become a crucial technique in controlling and pre-

venting distillation accidents. In the literature, several 

methodologies have been proposed for distillation fault 

diagnosis (Deshpande and Patwardhan, 2008; Gao et al., 

2010; Leung and Romagnoli, 2000; Namdari and Jaza-

yeri-Rad, 2014; Shahabinejad et al., 2014). However, no 

method can meet all the requirements of a distillation 

diagnostic system, so hybrid methods that can overcome 

the limitations of individual solution strategy are more 

attractive in practice (Venkatasubramanian et al., 2003). 

In a hybrid system, the parameter estimation method us-

es input-output, state-space and first principles models 

to determine process parameters and physically defined 

process coefficients, thereby allowing for a deeper in-

sight and easier diagnosis than other methods (Iser-

mann, 2005). The main limitation of this method is its 

complex model which leads to an excessive computa-

tion demand in searching fault causes. Accordingly, 

some improvements have been done to simplify model-

ing in the last decade. For example, Deshpande and 

Patwardhan (2008) used a Bayesian approach to identify 

a combination of several linear perturbation models in 

different operating regimes for a high-purity binary dis-

tillation column. Their parameter estimation result ob-

tained by a nonlinear generalized likelihood ratio (GLR) 

method shows a good performance for nonlinear pro-

cess in a transient state over a wide operating range. 

Wang and Bai (2013) used some correlation coefficients 

to depict first principles relationship among distillation 

variables, and determined the fault location by logic 

analysis on these coefficients. Tian et al. (2013) pro-

posed a two-tier model based fault diagnosis structure 

where the nonlinear model and its corresponding linear 

model are used for detection and diagnosis purposes re-

spectively.  

Above improved model-based parameter estimation 

approaches for distillation column have two features. 

Firstly, model scale is unchanged when equations in the 

model are simplified, that is, a complete set of equations 

must be incorporated to perform diagnosis task. Second-

ly, it is inadequate for robust diagnosis by only replac-

ing nonlinear model with simplified model because it 

loses a priori knowledge advantage.  

In process systems engineering field, decomposition 

is frequently used to divide complex system into several 

subsystems which can be treated independently for the 

purposes of optimization, control and/or design (Him-

melblau, 1966). During the past two decades, a number 

of decomposition applications for large-scale fault diag-

nosis have been carried out based on qualitative signed 

digraph model (Ahn et al., 2008; Lee et al., 2004; 

2006), qualitative fault-effect tree model (Lee and 

Yoon, 2001), and quantitative multilinear model 

(Bhagwat et al., 2003). Model decomposition differs 

from system decomposition only in objects studied, i.e., 

the former focuses on equations but the latter focuses on 

unit modules. Decomposition separates the original 

large-scale equation set into a series of small-scale sub 

equation sets which have a high sparse ratio and there-

fore could be solved efficiently for key variables. Based 

on our earlier dynamic simulation based distillation 

fault diagnosis works (Tian et al., 2012; 2013), a model 

decomposition based abnormal parameter estimation 

scheme for distillation process is proposed in this paper. 

The effect of decomposition strategy, submodel algo-

rithm, etc. on performance is discussed. 

In the following sections, how to decompose the rig-

orous nonlinear dynamic model is described at first. 

Then, the proposed model decomposition based abnor-

mal parameter estimation scheme is outlined and its ef-

fectiveness is demonstrated through TEP stripper simu-

lator example in comparison with rigorous model based 

method. 
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Figure 1. Dynamic model structure of distillation 

II. DECOMPOSITION OF NONLINEAR 

DYNAMIC DISTILLATION MODEL  

A. Nonlinear dynamic distillation modeling  

This model has been given in our earlier work (Tian et 

al., 2012). Based on the equilibrium stage assumption, it 

is composed of mass balance, enthalpy balance and 

phase equilibrium equations with a lot of abnormal pa-

rameters. The main structure of nonlinear dynamic 

model is depicted in Fig. 1. Explicit Euler method is 

chosen as the integral algorithm for this dynamic model 

in consideration of possible operations at each time in-

terval and high calculation speed requirement. In each 

iteration step, mass and enthalpy balances are conducted 

with initial stream and stage values from previous itera-

tion and then their integral results becomes initial values 

of the next iteration. 

B. Model decomposition 

System decomposition method divides a high-dimen-

sion and hereby intractable problem into several low-

dimension sub-problems. The latter consists of disjoint 

subsystems which can be solved easily. Disjoint subsys-

tem is defined as a subsystem that can be separated from 

original system and can be solved independently to sim-

plify original problem. Under chemical engineering 

scenarios, process equation set is usually composed of a 

great number of algebraic and ordinary differential 

equations (Eqs. 1 and 2). The vectors x and x  in these 

equations denotes the state variable vector and 

non-state variables, respectively. Occurrence ma-

trix is used to express dependence relation between 

equations and variables, as shown in Eq. (3).  
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 Himmelblau (1966) proposed the following algo-

rithm to identify the disjoint subsystems for large-scale 

equation set:  

 a) Select the kth column that contains most zero ele-

ments in m×m occurrence matrix S.  

 b) Reserve rows containing zero elements in the kth 

column, and combine all rows containing non-zero ele-

ment by Boolean addition operator into one row and add 

them at the end of matrix S. The obtained j×m matrix is 

denoted as S(0).  

 c) Repeat step b), and get a sequence {S, S(0), S(1), 

…, S(n)}.  

 d) In the finally obtained matrix S(n) which contains 

only one non-zero element in each column, each row 

corresponds to one disjoint subsystem of the original 

equation set.  

 The transposed occurrence matrix changes into adja-

cency matrix after removing all the output variables into 

diagonal and zeroing them. Reachability matrix is used 

to identify irreducible subsystems based on an adjacency 

matrix (Himmelblau, 1966).  

 The following subsections will highlight the decom-

position process for nonlinear distillation model in de-

tail. Only one stage is formulated in this model for sim-

plicity.  

(1) Occurrence matrix of nonlinear distillation model  
Mass and enthalpy balance of feed and side streams are 

basic for stage equilibrium calculation. Mass balance of 

feed streams is given in Eqs. (4) and (5), including n+1 

equations where n denotes the number of components.  

  



fj

jijFiF FxFx ,0,,,
, (4) 

 1, 
i

iFx . (5) 

 There is one enthalpy balance equation of feed 

streams (Eq. 6), liquid side (Eq. 7), and gas side (Eq. 8) 

respectively. 

  

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fj
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 

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 



gj

jFG . (8) 

 Based on above input/output balance, five equations 

are established for enthalpy balance on stage, including 

overall enthalpy balance (Eq. 9), jacket heating (Eq. 10), 

and enthalpy function (Eqs. 11 through 13). 
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 Overall mass balance on stage includes n+1 equa-

tions (Eqs. 14 and 15). 
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 Based on above mass and enthalpy balance, the 

time-consuming equilibrium calculation on stage in-

cludes 3n+5 equations (Eqs. 16 through 23). Vapor ratio 

e is iteratively solved through these equations based on 

the equilibrium stage assumption. 
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 Two equations are given to calculate pressure and 

liquid level on stage (Eqs. 24 and 25). 

 TRfmypVyppVyp  01)011( 0
, (24) 

 AtVxlev / . (25) 

 Finally, stream data around column are recalculated, 

including pressure, composition, temperature, etc.  

 There are twelve equations for flow rate relevant 

calculation (Eqs. 26 through 28), where subscript 1 

through 4 denotes reflux, top vapor, feed, and bottom 

liquid stream respectively. 
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Table 1. Variables in nonlinear distillation model 
No. Name Number No. Name Number 

1 xF,i n 14 yi n 

2 F 1 15 fmz 1 

3 hF 1 16 zi n 

4 S 1 17 e 1 

5 G 1 18 kei n 

6 h 1 19 Vy 1 

7 Q 1 20 Vx 1 

8 T 1 21 p 1 

9 fmx 1 22 lev 1 

10 hL 1 23 mws,j 4 

11 fmy 1 24 ρj 4 

12 hV 1 25 fmj 4 

13 xi n 26 fop4 1 

Total number  5n+30    

   
i

strii mwvbx 4,4 , (27d) 
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1
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2
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3

3
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4

4
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 Control loops are prerequisite for stable process con-

trollability. Especially, bottom liquid level is controlled 

in an allowable scope by manipulating bottom produc-

tion flow rate (Eq. 29). 
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 In all, the nonlinear distillation model is composed 

of 5n+30 equations. There are 5n+30 variables in these 

equations, as listed in Table 1. So variable number is 

equal to that of equation, meaning model can be solved 

definitely. 

 Based on above equations and variables, the corre-

sponding occurrence matrix of nonlinear distillation 

model is obtained, as shown in Table 2. 

(2) Disjoint subsystems  
Above occurrence matrix is finally transformed with 

Himmelblau algorithm into a matrix, as shown in Table  

3. It indicates three disjoint equation sets, denoted by I, 

II, and III, respectively. They represent top feed (I), bot 

tom feed (II) and rest part (III) in distillation model ac-

cording to related variables. 

III. FAULT DETECTION AND DIAGNOSIS 

SCHEME WITH DISJOINT SUBSYSTEMS  
Because each disjoint subsystem only corresponds to 

partial measurement, principle component analysis 

(PCA) is used to activate them in this paper. As one 

widely used process analysis and inspection method, 

PCA extracts relativity information through low-

dimension modeling based on statistics principle (Ge et  
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Table 2. Occurrence matrix of nonlinear distillation model 

 
Table 3. Transformed occurrence matrix 

 

 
 

al., 2012). Meanwhile, dynamic simulation uses rigor-

ous mechanism model to reflect inner characters of 

chemical processes under abnormal case, and therefore 

facilitates fault diagnosis in obtaining comprehensive 

and explainable root causes (Tian et al., 2012). Conse-

quently, two-step fault diagnosis system that takes ad-

vantages of PCA and disjoints nonlinear subsystems is 

useful for quick and accurate diagnosis.  

Figure 2 shows the two-step fault diagnosis scheme. 

Fault detection and isolation constitute the first step 

with the aid of PCA method. Fault detection part deter 

mines whether fault emerges through analyzing local 

data trend. In this procedure, measurable variables are 

collected online from chemical process. Several mean-

ingful characteristics are extracted from these variables 

to represent state or behavior of the process as a whole. 

If one or more characteristics stay in their acceptable 

range, the system is regarded as normal; otherwise, ab-

normal. A single statistic variable Q has been adopted in 

our early work for fault detection purpose (Tian et al., 

2012; 2013). 

Fault isolation is to find observable variables mostly 

relevant to fault in order to focus diagnosis on mostly 

possible abnormal subsystems. PCA analyzes contribu-

tion of each variable to T2 and Q to identify key varia-

bles.  

 After diagnosis scope is reduced according to varia-

ble contribution, the second step, fault diagnosis is acti-

vated based on dynamic simulation of disjoint subsys-

tems. Because most outer faults arise from abnormal 

change of inner model parameters, this fault diagnosis 

work accomplishes through online correction of dynam-

ic model. The obtained variation of model parameter is 

used to clarify root cause of current fault. The model 

correction is actually one constrained least square type 

optimization problem.  

IV. CASE STUDY  
Tennessee-Eastman process (TEP) is a widely used 

benchmark problem for fault diagnosis purposes (Ms et 

al., 2001). We therefore evaluate above two-step fault 

diagnosis scheme using the simulated stripper in TEP to 

discuss its application process and compare its result 

with the whole model based scheme.  

 The stripper has five streams and one reboiler, as 

shown in Fig. 3. It uses bottom stripping Stream 1 to 

take out majority of unconverted reactants from con-

densed reaction product (Stream 3). The high tempera- 
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Figure 2. Two-step framework of fault diagnosis 

 
Figure 3. Overview of TEP stripper case study 

ture steam (Stream 5) provides the necessary heat for 

stripping operation. Gaseous reactants and liquid prod-

ucts leave stripper from top (Stream 2) and bottom 

(Stream 4) respectively. There are 4 input manipulated 

variables and 12 output measurable variables in the 

stripper simulator. Five abnormal scenarios exit for this 

stripper consisting of composition, temperature and 

pressure variation in Stream 1. Abnormal data set given 

by stripper simulator includes 500 training data points 

and 960 testing data points with 3 minutes as sampling 

period. The two-step fault diagnosis system is coded 

with Matlab language, and its model parameters can be 

found in our earlier paper (Tian et al., 2012). 

 Fault No. 7 is selected as an example to compare 

model decomposition based diagnosis method with 

whole model based one. This fault, arising from the step  

decrease of source pressure in Stream 1 at 8h, reduces 

flow rate of Stream 1 and thereafter stripping effect 

greatly. Pressure loss coefficient ε1 is added into Eq. 

(28a) to quantify fault No. 7 as follows: 

  11111

1

1
1,1 adpptopfr

kvr

fop
mwfm s   . (30) 

 Figure 4 shows change of pressure loss coefficient 

obtained by the fault diagnosis algorithm based on 

whole distillation model (Tian et al., 2012). It can be 

seen that coefficient curve waves greatly because of 

control loops and measurement noise. As this violent 

wave hampers clarifying root abnormal causes during 

diagnosis, it is necessary to limit submodel scope to de-

crease effect of external disturb on inferred fault param-

eters. 

 System decomposition strategy is then applied to di-

agnosis process. In Section II, the whole distillation 

model is decomposed using Himmelblau algorithm into 

three submodels, that is, top feed part (I), bottom feed 

part (II) and remaining part (III). Fault No. 7 appears in 

Stream 1, so submodel II is exclusively needed during 

diagnosis and fault parameter computation process is 

thus simplified and accelerated. Figure 4 also gives di-

agnosis result with submodel about fault No. 7. It shows 

a clearer curve shape of fault parameter than whole 

model based method. In view of computation speed, the 

latter consumes 30 seconds while the former consumes 

704 seconds for fault No. 7. So decomposition strategy 

is very effective in speeding up time-consuming nonlin-

ear model based fault diagnosis process. 

 Median filter and lifting wavelet analysis method are 

used to remove measurement noise for sampling data 

and enhance diagnosis robustness. Figure 5 gives the di-

agnosis result after using data filter. It shows that curve 

shape of pressure loss coefficient basically keeps un-

changed for whole model based method, although filter 

removes almost all the random noise from inferred pa-

rameter. This figure also gives a much more clear and 

legible change curve of fault parameter than Fig. 4 with 

submodel based method, benefiting identification of 

base abnormal reasons. Consequently, decomposition 

strategy should be combined with filter to expect greatly 

improved fault diagnosis result. 

 Above marked improvement of computational effi-

ciency results from small scale of submodel II. For an-

other fault No. 10, i.e. random variation of temperature 

in Stream 1 (embedded in h0,j in Eq. 6), its computation-

al efficiency cannot be expected to enhance greatly be-

cause it lies in large scale submodel III. Conse quently, 

in consideration of modeling complexity and computa-

tional efficiency, this decomposition based approach is 

still limited to unit models with a high sparse 
 

 
Figure 4. Diagnosis result for fault No. 7 without data filter 
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Figure 5. Diagnosis result for fault No. 7 with data filter 

ratio. Otherwise, overly tight connections between vari-

ables will neutralize computing benefit from decompo-

sition strategy greatly. So, future research should focus 

on the partial decomposition strategy for non-sparse 

models. 

V. CONCLUSIONS 

A two-step model decomposition based diagnosis 

framework has been implemented for distillation pro-

cess. The whole nonlinear distillation model was divid-

ed into three disjoint parts with the aid of Himmelblau 

algorithm. After identifying fault type with PCA meth-

od, fault diagnosis work employs different disjoint sub-

models to cut down computation time and weaken effect 

of fault propagation on result. Moreover, median filter 

and lifting wavelet analysis method are used to remove 

gross noise and white noise from measured data to en-

hance diagnosis robustness. The proposed method was 

applied to the stripper example in TEP simulator. Result 

shows that two-step diagnosis framework facilitates ob-

taining faster and clearer fault parameter trend than 

whole nonlinear model based scheme as it reduces mod-

el scale undertaken. Future work will be focused on ir-

reducible submodel by tearing variable loops to obtain 

complex fault parameters.  
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