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Abstract−− Selection of appropriate machining 

parameters which result in desired outcomes plays a 
key role in effective utilization of the electrochemical 
machining (ECM) process. In this paper, in order to 
correlate between ECM process parameters and cost 
functions, comprehensive mathematical models were 
first determined based on response surface method-
ology (RSM). Voltage, tool feed rate, electrolyte flow 
rate and concentration of NaNO3 solution were con-
sidered as the machining parameters while material 
removal rate (MRR) and surface roughness (Ra) 
were considered as cost functions. To do this, three 
scenarios of machining performances, Ra≤0.9µm, 
0.9µm≤Ra≤ 1.8µm, and 1.8µm≤Ra≤2.7µm, were con-
sidered for optimization search based on desirability 
functions. The goal is to find the optimum set of ma-
chining parameters in order to maximize the MRR 
while keeping Ra in specified ranges simultaneously. 
The results show that the errors between experi-
mental and anticipated optimal values are less than 
8.16% and hence confirm the effectiveness of the 
proposed approach. 

Keywords−− Desirability function, electrochemi-
cal machining, modeling, optimization, response sur-
face methodology 

I. INTRODUCTION 
Electrochemical machining (ECM) is a non-traditional 
machining, which has significant applications in various 
industries from consumer products to more sophisticat-
ed, high-tech applications such as micro to macro scale 
products.  

Moreover, ECM has advantages over other machin-
ing processes. for instance, conductive materials, re-
gardless of their hardness and toughness, can be ma-
chined with a tool, which is not harder than the work-
piece and without tool wear (Rumyantsev and Davydov, 
1989).  

However, the ECM involves several physical and 
chemical phenomena and a number of process parame-
ters that make it difficult to model (Hinduja and Ku-
nieda, 2013). As a result, experimental investigations, 
design of experiments (DOE), statistical and optimiza-
tion approaches play a vital part in the selection of the 
proper set of parameter (Rao and Kalyankar, 2014; 
Yusup et al., 2012). 

There are researches that had investigated this pro-
cess experimentally and offered some excellent results; 
still, more experimental studies is required to cover a 

wide range of materials and methods for the optimiza-
tion and improvement of the machining performances 
(Rao and Kalyankar, 2014). Thus, implementation of 
design-of-experiments (DOE) method has increased in 
various manufacturing processes (Montgomery, 2009; 
Singh et al. 2010).  

Response surface methodology (RSM), a DOE 
method, is capable of resolving curvature in the output 
associated with each input, detecting interactions’ ef-
fects and establishing mathematical models with suita-
ble sets of experiments (Sivaprakasam et al., 2013; As-
sarzadeh and Ghoreishi, 2013). 

There are some researches in the ECM processes for 
single objective optimization (Munda et al., 2007; 
Bähre et al., 2013). In addition, advanced optimization 
techniques have been used so that the optimal condi-
tions of ECM processed can be sought and proposed 
(Asokan et al., 2008; Senthilkumar et al., 2010; Saman-
ta and Chakraborty, 2011; Mukherjee and Chakraborty, 
2013). 

According to the number of researches conducted on 
the optimization of machining processes, it is concluded 
that fewer works dealt with the ECM process than other 
machining processes (Rao and Kalyankar, 2014). On the 
other hand, most of the studies conducted for the opti-
mization of the ECM process, are based on single objec-
tive optimization (Rao and Kalyankar, 2014). However, 
it is of desire to have a method that leads to obtain the 
comprehensive global set of optimal parameters.    

The purpose of this research is to propose a reliable 
approach for process optimization and modeling of the 
ECM process, therefore a dual response surface-
desirability approach has been applied for process opti-
mization. To do this, mathematical models were first es-
tablished based on response surface methodology 
(RSM). Then, desirability function is applied as a search 
optimization procedure.  

The goal is to maximize material removal rate 
(MRR) while keeping the surface roughness (Ra) to its 
minimum amount within a predefined range. These re-
sponses would not be optimized in the same manner and 
have conflicting behaviors, so a single combination of 
machining parameters cannot be determined as the only 
optimal solution. As a result, three scenarios of machin-
ing performance, according to the predefined surface 
roughness, are considered, and the responses have been 
optimized simultaneously. Finally, the obtained optimal 
sets of parameters were verified experimentally, and 
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their results approve the effectiveness and feasibility of 
the proposed approach.  

II. EXPERIMENTAL WORK 
A. Set-up and machine 
The experiments were carried out on a home-developed 
machine (Fig. 1). The tool is moved forward and back-
ward using the AC servo motor through a ground preci-
sion ballscrew with a pitch of 2.5 mm and two precision 
linear guides. Machining place, built by Plexiglas with a 
door, provides more convenience for changing the 
workpiece. Figure 2 displays the workpiece and the tool 
with their fixtures in the machining place. All used con-
nectors, valves and hoses are made of 316 stainless 
steel, PVC and polyethylene; thus, the electrolyte com-
position does not change while flowing through these 
parts. The main pump supplied with 3-ph AC motor and 
an inverter provide the capability to set the electrolyte 
flow rate with the help of ultrasonic flowmeter. Output 
of power supply is 30 V and 100 A DC current.  

B. Materials and measurements 
Thirty-one 321-stainless steel bars 8 mm in diameter 
were used as the workpiece. Commercially available cy-
lindrical copper with the same diameter as workpiece 
was also used as the tool. Whereas the experiments must 
be conducted in stable conditions with uniform initial 
gap distance, workpiece and tool were grinded and de-
burred to remove any possible surface irregularities to 
guarantee even and parallel surfaces. The experiments 
were carried out in NaNO3 electrolyte solution with var-
ious concentrations. The electrolyte flow system was 
used in cross and planning method to ensure an effec-
tive flushing during machining. The weight of the 
workpiece was measured before and after machining by 
a precise weighing machine (0.0001g) to calculate the 
material removal rate (MRR). The arithmetic mean 
roughness (Ra) was employed to evaluate the surface 
roughness of the specimens. This measurement was per-
formed through using surface tester SJ-210-
MITUTOYO. The cut-off length and measuring speed 
were set at 0.8 mm and 0.5mm/s, respectively. 

Fig. 1. The ECM machine. 

 
Fig. 2. Machining place with workpiece and tool. 

 
Fig. 3. Workpiece after machining: (a). run 10; (b). run 13; (c). 
run 18; (d). before machining 

Table 1. The independent ECM process factors and their levels. 
Factors Levels 

 -2 -1 0 1 2 
Voltage (x1, V) 10 15 20 25 30 

Tool feed rate (x2, 
mm/min) 0.2 0.3 0.4 0.5 0.6 

flow rate (x3, l/min) 5 6 7 8 9 
Concentration (x4, g/l) 50 100 150 200 250 

C. Experimental plan and conditions 
The machining was carried out for a fixed time interval 
of 2 min; the initial gap distance was set at 0.6 mm. In 
the present study, the experimentation strategy was con-
sidered based on the central composite second order ro-
tatable design (CCD) so that the higher-order input pa-
rameters, effects and their interactions on machining re-
sponses were determined. The values of four process 
inputs and their levels are shown in Table 1.  Therefore, 
the design consists of 31 runs, in which 16 factorial 
points, 8 axial points, and 7 center points for estimating 
the experimental error. The central composite parameter 
α was considered 2 to ensure a rotatable design.  

Table 2 presents the values of machining responses, 
i.e. MRR and Ra according to experimentation plan. Fig. 
3 shows the sample workpieces before and after ma-
chining. 

III. RESPONSE SURFACE METHODOLOGY 
(RSM)  

In this research, RSM was applied as a design of exper-
iment (DOE) method to determine how the machining 
parameters influence the machining responses. RSM is a 
powerful way for establishing the relationship between 
input parameters and responses which is useful for the 
modeling and analysis of the problems; the relationship 
could be mathematically and statistically developed by 
second-order polynomial as follows (Myers and Mont-
gomery, 1995):  
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Table 2. Central composite design plan matrix and results. 
 

Exp. 
No. 

Factors Responses 

x1 x2 x3 x4 
MRR 

(g/min) 
Ra 

(µm) 
1 -1 -1 -1 -1 0.1253 0.76 
2 1 -1 -1 -1 0.2134 1.08 
3 -1 1 -1 -1 0.1547 0.89 
4 1 1 -1 -1 0.2361 1.13 
5 -1 -1 1 -1 0.1246 0.84 
6 1 -1 1 -1 0.2107 1.16 
7 -1 1 1 -1 0.1569 0.96 
8 1 1 1 -1 0.2525 1.31 
9 -1 -1 -1 1 0.1673 1.29 

10 1 -1 -1 1 0.2921 1.94 
11 -1 1 -1 1 0.1975 1.63 
12 1 1 -1 1 0.3218 2.21 
13 -1 -1 1 1 0.1779 1.47 
14 1 -1 1 1 0.2979 2.15 
15 -1 1 1 1 0.2019 1.78 
16 1 1 1 1 0.3235 2.49 
17 -2 0 0 0 0.1154 1.22 
18 2 0 0 0 0.3379 2.17 
19 0 -2 0 0 0.1989 1.12 
20 0 2 0 0 0.2755 1.51 
21 0 0 -2 0 0.1927 1.12 
22 0 0 2 0 0.2194 1.35 
23 0 0 0 -2 0.1365 0.72 
24 0 0 0 2 0.2696 2.45 
25 0 0 0 0 0.2351 1.00 
26 0 0 0 0 0.2291 0.98 
27 0 0 0 0 0.2250 1.02 
28 0 0 0 0 0.2238 0.96 
29 0 0 0 0 0.2220 1.04 
30 0 0 0 0 0.2275 0.95 
31 0 0 0 0 0.2232 1.02 

Table 3. The T-test for MRR response including all parameters using 
the Minitab software 

Terms Coefficient SE coefficient T value P-value 
x1   0.053621 0.001188 45.148 0.000 
x2 0.016204 0.001188 13.644 0.000 
x3 0.003796 0.001188 3.196 0.006 
x4 0.032163 0.001188 27.080 0.000 
x1 * x1 -0.000362 0.001188 -0.333 0.743 
x2 * x2 0.002275 0.001188 2.091 0.053 
x3 * x3  -0.005512 0.001188 -5.066 0.000 
x4 * x4 -0.006262 0.001188 -5.755 0.000 
x1 * x2 0.000244 0.001455 0.168 0.869 
x1 * x3  0.000294 0.001455 0.202 0.843 
x1 * x4 0.008719 0.001455 5.994 0.000 
x2 * x3 0.000731 0.001455 0.503 0.622 
x2 * x4 -0.001044 0.001455 -0.718 0.483 
x3 * x4 0.000456 0.001455 0.314 0.758 
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where y is the desired response, e.g. MRR and Ra in this 
paper, xi is the levels of the independent variables, and ε 
is the fitting error. Coefficient b0 is the constant value or 
intercept and coefficients bi, bii and bij represent the lin-
ear, quadratic and interaction terms, respectively (Myers 
and Montgomery, 1995). 

A. Mathematical modeling of MRR 
The same procedure has been applied for the modeling 
of the machining criteria, MRR and Ra, with machining 
parameters based on the RSM. 

Therefore, the analysis of variance (ANOVA) and t-
test have been executed to establish model. Also, the 
fitness of the model to the experimental data, significant  
 

Table 4. The ANOVA results for MRR response without insignificant 
parameters using the Minitab software 

Source of 
variation DF Sum of 

Squares 
Mean 

Squares 
F 

value 
P 

value 
Regression 8 0.103873 0.012980 494.83 0.000 

Linear 4 0.100478 0.025120 957.65 0.000 
Square 3 0.002142 0.000714 27.23 0.000 

Interaction 1 0.001216 0.001216 46.37 0.000 
Residual 

Error 
22 0.000577 0.000026   

Lack-of-
Fit 

16 0.000455 0.000028 1.39 0.359 

Pure Error 6 0.000122 0.000020   
Total 30 0.104414    

R-Sq = 99.45%, R-Sq(adj) = 99.25% 

and insignificant parameters and adequacy of model 
were analyzed.  

Moreover, the R-squared (R-Sq) and adjusted R-
squared (R-Sq.(adj)) are used for assessing the modeling 
goodness of fit. The more the R2 approaches unity, the 
better the model fits the experimental data. Indeed, the 
best condition of analysis of effective models happens 
as the lack-of-fit is insignificant.  

Next, insignificant terms have been eliminated from 
the models, and ANOVA has already been done again 
through the available significant terms (dual response 
surface).  

In this way, Table 3 shows the t-test results for the 
MRR regression model. It is concluded that all the line-
ar terms, quadratic terms of input factors x2, x3 and x4, 
and interaction effect of factors x1 and x4 are significant, 
and other terms are insignificant. The insignificant 
terms have been eliminated; the ANOVA have again 
been done to significant terms; the results are shown in 
Table 4. The p-value of the quadratic model is much 
less than 0.05, so the model is statistically significant in 
the 95% of confidence interval. Besides, the p-value of 
the lack-of-fit is more than 0.05, so this term is insignif-
icant, which is desired.  As a result, the final reduced 
model of MRR based on significant parameters is de-
veloped as follows: 
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The R2 (R-Sq) and adjusted R2 (R-Sq(adj)) are re-
spectively 99.45% and 99.25% for the above MRR 
model ensuring an excellent fitting for the model. Nor-
mal probability plot of residuals in Fig. 4 show that ex-
perimental data are located approximately along a 
straight line; that is, the experimental values correlate 
closely with the predicted values for the response. 

B. Mathematical modeling of Ra 
The same procedure is used to deal with the Ra. The 
student’s t-test (Table 5) has also been done for deter-
mining the significance of each parameter. Therefore, 
all linear and quadratic terms of parameters and the in-
teraction between x1 (voltage) and x3 (flow rate), x1 and 
x4 (concentration), x2 (tool feed rate) and x4, and x3 and 
x4 are significant. The other model terms can be regard-
ed as insignificant terms.  
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Fig. 4. Normal probability plot of Residuals for MRR 

Table 5. The T-test results for Ra response including all parameters us-
ing the Minitab software 

Terms Coefficient SE coefficient T value P-value 
x1   0.239583 0.005961 40.190   0.000 
x2 0.103750   0.005961 17.404   0.000 
x3 0.070417   0.005961 11.812   0.000 
x4 0.428750   0.005961 71.922   0.000 
x1 * x1 0.172426   0.005461 31.572   0.000 
x2 * x2 0.077426   0.005461 14.177   0.000 
x3 * x3  0.057426   0.005461 10.515   0.000 
x4 * x4 0.144926   0.005461 26.537   0.000 
x1 * x2 -0.005625   0.007301   -0.770   0.452 
x1 * x3  0.016875   0.007301   2.311   0.034 
x1 * x4 0.086875   0.007301   11.899   0.000 
x2 * x3 0.008125   0.007301   1.113   0.282 
x2 * x4 0.050625   0.007301   6.934   0.000 
x3 * x4 0.025625   0.007301   3.510   0.003 

 
By removing these insignificant terms and applying 

the ANOVA, the proper quadratic model for Ra can be 
developed as follows: 

43424131

2
4

2
3

2
2

2
1

4321

000510010130000350003380
0579702505743074256700690

02340877920675363037140619648

xx.xx.xx.xx.
xE-.x.x.x.

x.x.x.x.  .Ra

++++
++++

−−−−=
(3) 

    

The ANOVA details of reduced Ra model are shown 
in Table 6. Consequently, the model is significant while 
the lack-of-fit is insignificant. The R2 and adjusted-R2 
for the Ra trimmed model are respectively 99.80% and 
99.67% revealing sufficient adequacy in model predic-
tive capabilities. Like before, normal probability plot of 
residuals in Fig. 5 are nearly linear. 

IV. OPTIMIZATION, RESULTS AND 
DISCUSSION 

A. Desirability approach 
This approach developed by Derringer and Suich (1980) 
is an attractive search-based optimization technique 
used to find the optimal parameters combination global-
ly. This technique uses a desirability function as an ob-
jective function in which each response yi is transformed 
to an individual desirability function (di) between zero 
and one.  That is, one indicates that the response is the 
completely desirable value (at its target), and zero 
shows that the response is the least desirable value (out-
side of its acceptable limits). Thus, the overall (compo-
site) desirability (D) is determined by the geometric 
mean of the individual desirability functions as follows 
(Castillo et al., 1996):  

 
Fig. 5. Normal probability plot of Residuals for Ra 

Table 6. The ANOVA results for Ra response without insignificant pa-
rameters using the Minitab software 

Source of 
variation DF Sum of 

Squares 
Mean 

Squares 
F 

value 
P 

value 
Regression 12 7.73675 0.64473 763.05 0.000 

Linear 4 6.16678 1.54170 1824.62 0.000 
Square 4 1.39314 0.34828 412.20 0.000 

Interaction 4 0.17682 0.04421 52.32 0.000 
Residual 

Error 
18 0.01521 0.00084   

Lack-of-Fit 12 0.00844 0.00070 0.62 0.772 
Pure Error 6 0.00677 0.00113   

Total 30 7.75195    
R-Sq = 99.80%, R-Sq(adj) = 99.67% 
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where n is the number of responses. Also, the individual 
desirability function di will be defined depending on 
whether the response yi is to be maximized, minimized, 
or assigned a target value.  

B. Optimization formulation 
The goal of the optimization in the ECM process is to 
maximize the MRR and minimize the surface roughness 
(Ra).However, these objectives are conflicting in nature; 
therefore the determination of the single combination of 
the machining parameters for response optimization is 
impossible.  

Thus, in this paper, three scenarios of surface rough-
ness are considered. The goal is to achieve the highest 
possible material removal rate (MRR) while keeping the 
Ra to its minimum possible at each scenario. Hence, the 
optimization problem of the ECM process is formulated 
as bellow: 
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C. Optimization of the ECM process and analysis 
As previously mentioned, three different values, 0.9, 
1.8, and 2.7 µm, have been selected for maximum limits 
of surface roughness at each scenario, and accordingly 
maximum MRR have been determined. Consequently, 
two desirability functions, d1 and d2 have been appoint-
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ed for the MRR and Ra, respectively. The optimization 
results were obtained by Minitab 16 software. Optimiza-
tion results for these three described scenarios are 
shown in Figs. 6-8. 

In Figs 6-8, each column of plots represents a pro-
cess parameter and each row represents the responses, 
i.e., performance measures. Also, the first row shows 
the range of input machining parameters and their opti-
mal values located between the upper and lower bounds 
(red values) of four machining input parameters. More-
over, the first column represents the composite desira-
bility, individual desirability and optimal values of the 
MRR and Ra responses (blue values). Also, the vertical 
lines (red lines) inside the cells represent current opti-
mal set of parameters whereas the dotted horizontal 
lines (blue lines) represent the current response values. 

Also in Figs 6-8, each cell in the MRR and the Ra 
rows illustrates how the response varies with the chang-
es in one machining parameter as the other parameters 
remain constant. These cells of the figures demonstrate 
that the MRR increases with an increase in the voltage, 
tool feed rate and electrolyte concentration. A higher 
voltage and electrolyte concentration results higher cur-
rent in machining gap, thus increasing the material dis-
solutions. Also, the higher tool feed rate creates a small-
er inter electrode gap (IEG), so the electrical current in-
creases. Furthermore, for achieving proper flushing 
along the IEG, the electrolyte flow rate, approximately 
in the middle level, is the best condition for both re-
sponses. On the contrary, below the middle level of 
voltage, tool feed rate and electrolyte concentration 
cause more localized dissolution and reduce the height 
of valleys and peaks in the surface decreasing the sur-
face roughness.  

Figure 6 shows the result of optimization in the first 
scenario. Therefore, the middle level of voltage, tool 
feed rate and electrolyte flow rate, 20 V, 0.4 mm/min 
and 7 l/min, respectively and 137.8 g/l electrolyte con-
centration are the optimal machining input parameters 
in this scenario. The results of optimal conditions in the 
second scenario are depicted in Fig. 7. 23.3 V, 0.6 
mm/min tool feed rate, 6.5 l/min electrolyte flow rate, 
and 158 g/l concentration are the optimal machining pa-
rameter settings in this scenario. Finally, optimal ma-
chining parameters combination, 30 V, 0.5 mm/min tool 
feed rate, 6.97 g/l electrolyte flow rate, and 175.6 g/l 
concentration are shown in Fig. 8 for the third scenario.  

The overall and individual desirability functions in 
all of these figures are in the highest values 1, which in-
dicate the existence of global optimum points in each 
case (Derringer and Suich, 1980). 

D. Confirmation experiments 
In this section, new experiments were conducted with 
the optimum machining parameters of these regimes. 
Table 7 summarizes simulated and actual values of re-
sponses. It is observed that the maximum percentage 
relative errors for MRR and Ra are below 5.86 and 8.16 
%, respectively. This confirms excellent predictability 
and reproducibility of the proposed approach.  

 
Fig. 6. Optimization results for first regime (Ra ≤0.9) 

 
Fig. 7. Optimization results for second regime (0.9≤Ra ≤1.8) 

 
Fig. 8. Optimization results for third regime (1.8≤Ra ≤2.7) 

Table 7. Results of confirmation experiments 
regime MRR Ra error (%) 

Exp. Opt. Exp. Opt. MRR Ra 
First regime 0.228 0.218 0.98 0.9 4.39 8.16 
Second re-

gime 
0.324 0.305 1.93 1.8 5.86 6.74 

Third regime 0.386 0.375 2.57 2.7 2.85 5.06 

V. CONCLUSIONS 
The main contribution of this research is to establish 

a reliable approach for the process optimization and 
modeling of the ECM. In brief, a dual response surface-
desirability approach was applied for this matter. The 
main outcomes are as follow:  
1. All the linear terms, quadratic terms of tool feed rate, 

electrolyte flow rate and concentration, and interac-
tion effect of factors voltage and concentration are 
significant terms in the MRR response. See Section 
III and Tables 3-4. 
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2. All linear and quadratic terms of parameters and the 
interaction between voltage and flow rate, voltage and 
concentration, tool feed rate and electrolyte flow rate, 
electrolyte flow rate and concentration are significant 
terms in the Ra response. See Section III and Tables 
5-6.  

3. According to the ANOVA and t-test, among the pro-
cess parameters, the machining voltage and electro-
lyte concentration are the most effective factors.  

4. Increasing voltage, tool feed rate and electrolyte con-
centration lead to an increase in the MRR. In addition, 
the proper flushing of electrolyte improves MRR, 
which can be regulated by the electrolyte flow rate. 

5. Below the middle level of the voltage, tool feed rate 
and electrolyte concentration, causes a decrease in the 
surface roughness. It means, suitable flushing of elec-
trolyte enhances the surface roughness. 

6. The results of verification experiments for each sce-
nario showed 5.86 and 8.16 % as the maximum per-
centage of relative errors for MRR and Ra, respective-
ly. Thus, the desirability function-based optimization 
technique proves to be an effective and robust ap-
proach in finding optimal parameters related to the 
predefined desired machining performance. 
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