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Abstract−− In this article, advanced analytics will 

be applied to the lean 8 step problem solving tech-

nique aiming to increase the data analysis reliability. 

The modelling techniques consider in this work are 

boosted and bagging decision trees, artificial neural 

networks, relief and stepwise regression. The pro-

posal is validated by the evaluation of a bleaching pro-

cess problem on a pulp mill. The high pressure events 

on bleaching washer feeding stage resulted on bleach-

ing non planned shutdowns. The lean 8 steps problem 

solving technique allied to advanced analytics model-

ing tools reduced the high pressure events on 63%. As 

a result, the plant reduced its loss of production due 

to bleaching plant and allowed to increase the pulp 

production rate. On this example the relief, decision 

trees and stepwise regression algorithms proved to be 

a well-tuned packet for problem solving in a pulp mill. 

Keywords−− Lean Manufacturing, Problem Solv-

ing, Advanced Analytics, Process Modelling, Pulp 

Mill. 

I. INTRODUCTION 

The availability of natural resources has been reducing 

year by year, causing an increase of direct cost for many 

companies. This impact is higher in commodities com-

pany, where the cost is one of the most important issue. 

This scenario shows a growing demand for management 

systems driven by continuous improvement and problem 

solving. Lean manufacturing is usually accompanied by 

a shift towards exposure and problem solving (Forrester, 

1995). Working as groups, while utilizing appropriate 

problem-solving techniques, it will increase efficiency in 

work improvement outputs (Gatchalian, 1997). A typical 

lean technique for trouble shooting is the 8 steps problem 

solving methodology. The problem solving techniques 

can vary slightly according to the industry segment and 

problem complexity.  

In present case for complex problems, it is used the 

following steps sequence (Fig. 1). 

The problem-solving efficacy among the organiza-

tion is also related to the lean principles that drive the lean 

transformation. According to (Puvanasvaran et al., 2008) 

these principles are meant to provide a framework to fo-

cus the direction in enhancing problem solving capability 

among employees by forming as people development 

system in lean process management. 

 
Figure 1.  8 steps problem solving technique. 

 
Figure 2. Displacement drum washer (DDW). Adapted from 

Andritz operational manual (Andritz, 2017). 

Considering one of the principles, the scientific ap-

proach, this paper aims to use advanced analytics tools 

on step 4 (Hypothesis and possible causes). As a result, it 

is expected that this approach can provide a more effi-

cient use of data on the actual problem solving technique. 

For this purpose, a couple of non-parametric and par-

ametric techniques are applied to a real problem solving 

session. The study case is the non-planned shutdowns of 

Eop bleaching stage washer of a pulp mill. 

II. BACKGROUND 

At the beginning, it is desirable to review the main pro-

cesses principles corresponding to the study case and 

problem associated. 

A. EOP stage on bleaching process 

Eop stage is responsible to extract the residual of lignin, 

which has reacted in the first stage. Also, it has a second 

function, which is increase brightness using oxygen and 

hydrogen peroxide. From the Eop reactor top, pulp is dis-

charged with help of the Eop reactor flow discharger and 

blown to the Eop stage DD washer. Hot water and acid 

filtrate (D1 stage) are used for pulp washing. From the 

Eop DD washer pulp drops to the Eop DD washer dis-

charge standpipe. 

The main purpose of Eop DD washer is remove all 

residual of lignin from pulp solution and send it to the 

effluent treatment (Fig. 2). 

The washer operates with the following loop controls: 
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1. Pulp feed inlet flow: Control the feeding pulp flow 

from the Eop reactor by adjusting the washer inlet 

valves. If the flow setpoint increases the valves in-

creases the opening. 

2. Inlet filtrate pressure: It controls the filtrate pressure, 

which flows from the D1 stage to the DDW showers 

using changing the setpoint of the inlet filtrate flow 

loop control. If the pressure increases the flow set-

point decreases. 

3. Inlet filtrate flow: Control the inlet filtrate flow using 

the filtrate inlet valves, it operates as a slave control 

for the inlet filtrate pressure. If the setpoint increases 

the valve increases the opening. 

4. Filtrate level control: Control the vacuum vase level 

using the filtrate outlet valve. If the valves open the 

level reduces. 

5. Pulp feed inlet pressure: Control the washer feeding 

stage pressure. If this pressure increases above the 

higher limit the washer trips. 

The problem is associated to the pulp feed inlet pres-

sure loop control, which many times suddenly increases 

reaching the DD washer interlock value. Between 2015 

and 2017, the high pressure feeding events frequency was 

13.7 events/month. These events cause bleaching shut-

downs and production losses in the mill. For instance, the 

theoretical pulp production losses sum the amount of 

9761 tons per year, based on 2016 OEE (Overall Equip-

ment Effectiveness). Furthermore, this problem is a well-

known bottleneck for mills pulp production. 

Given this, it is proposed a literature review regarding 

the process modelling techniques applied to the Eop DD 

washer problem solving session. 

B. Adaboost decision trees 

The Adaboost algorithm developed by Freund and 

Schapire (1996) is a non-parametric modelling tech-

nique. It maintains a set of weights over the original train-

ing set S and adjusts these weights after each classifier is 

learned by the base learning algorithm. The adjustments 

increase the weight of examples that are misclassified by 

the base learning algorithm and decrease the weight of 

examples that are correctly classified. 

There are two ways that Adaboost can use these 

weights to construct a new training set S’ to give to the 

base learning algorithm. In boosting by sampling, exam-

ples are drawn with replacement from S with probability 

proportional to their weights. The second method, boost-

ing by weighting, can be used with base learning algo-

rithms that can accept a weighted training set directly. 

With such algorithms, the entire training set S (with as-

sociated weights) is given to the base learning algorithm. 

Both methods have been shown to be very effective 

(Quinlan, 1996). 

C. Bagging decision trees 

Bootstrap aggregating (bagging) algorithms are applied 

for decision trees resulting in non-parametric models. It 

is often compared to boosting technique. Neither of these 

two approaches has a clear advantage over the other. On 

average boosting seems to provide a better predictive 

power. Bagging tends to perform better in the presence 

of outliers and significant noise (Bauer, 1999).  

In bagging, each training set is constructed by form-

ing a bootstrap replicate of the original training set. In 

other words, given a training set S of m examples, a new 

training set S’ is constructed by drawing m examples uni-

formly (with replacement) from S.  

Bagging generates diverse classifiers only if the base 

learning algorithm is unstable which is, if small changes 

to the training set cause large changes in the learned clas-

sifier. Breiman (1994) explores the causes of instability 

in learning algorithms and discusses ways of reducing or 

eliminating it. Bagging (and to a lesser extent, boosting) 

can be viewed as ways of exploiting this instability to im-

prove classification accuracy. Adaboost requires less in-

stability than bagging, because Adaboost can make much 

larger changes in the training set (e.g., by placing large 

weights on only a few of the examples). 

D. Artificial neural networks (ANN 

According to Haykin (1999), a neural network is a mas-

sively parallel distributed processor that has a natural 

propensity for storing experimental knowledge and mak-

ing it available for use, it resembles brain in two ways i) 

knowledge is acquired by the network through learning 

process and ii) Interneuron connection strengths known 

as synaptic weights are used to store the knowledge. 

Learning in NN means a dynamic process which modi-

fies the weights of the network in some desirable way. In 

terms of learning, NNs can be divided basically into two 

classes: Non-Supervised Networks and Supervised Net-

works. 

As presented by Pasquotto (2010), in the Supervised 

NNs, there is an association between the Input and output 

values, which can be, for example, real data of a system 

and that will be used as reference in the training of the 

network. When there is a divergence between the NN 

output and the desired output, the values of the synaptic 

weights of the network are adjusted until the error be-

tween the output and the reference reaches an acceptable 

value. This learning process is called learning by error 

correction. These networks use perceptrons multilayers 

with at least one hidden layer and one output layer. 

According to Evaldt (2001), the best-known learning 

algorithm for this type of network is the Error backprop-

agation algorithm, which employs the learning rule by er-

ror correction. In summary, the error backpropagation al-

gorithm consists on the synaptic weights adjust as a func-

tion of an error signal. 

In this work, the author emphases on Supervised Net-

works, so no more details for Non-Supervised Networks 

are necessary. 

E. Relief 

According to Robnik-Sikonja and Kononenko (2003) the 

Relief algorithms (Relief, ReliefF and RReliefF) can sep-

arate the interaction between attributes. They are effi-

cient, aware of the contextual information, and can cor-

rectly estimate the quality of attributes in problems with 



 F. DE CARLI, R.I.G. MEJIA, G.A.T. DE ARAÚJO 

177 

strong dependencies between attributes. These algo-

rithms are commonly used as a preprocessing step before 

implement the process model because it can calculate the 

attributes weight, to select splits and guide the construc-

tive induction in learning of the regression trees and other 

pre-modelling features (Robnik-Sikonja and Kononenko, 

1997). 

A key idea of the original Relief algorithm (Kira and 

Rendell, 1992), is to estimate the quality of attributes ac-

cording to how well their values distinguish between in-

stances that are near to each other. The original Relief can 

deal with nominal and numerical attributes. However, it 

cannot deal with incomplete data and is limited to two-

class problems. Its extension, which solves these and 

other problems, is called ReliefF. 

F. Stepwise Regression 

According to Seber and Lee (2003) in systems where 

multiple regression analysis involves a set of variables, it 

may be necessary to use a method to select the main in-

dependent variables to be used on the model. This proce-

dure reduces the computational processing for calcula-

tions, as well as the need to acquire new data to update or 

maintain the model. In addition, it can be shown that, in 

some cases, closer to reality models can be obtained by 

excluding input variables from the process of analysis. 

The personal expertise may be useful to reduce the num-

ber of independent variables. 

Stepwise regression is a linear parametric modelling 

technique and can be helpful to predict the process be-

havior. Thus, it allows further analysis regarding the op-

timal operational ranges for main independent variables. 

The linear function resultant is described by  

 𝑌(𝑥1, 𝑥2, … , 𝑥𝑘) = 𝛽0 + 𝛽1 ∗ 𝑥1 + 𝛽2 ∗ 𝑥2 + 

 …+ 𝛽𝑘 ∗ 𝑥𝑘 (1) 

where: Y is output variable, also called the predicted var-

iable. The x represents the input variables or predictors. 

𝛽0 is the vertical axis interception and 𝛽 are the regression 

coefficients, which correlates the input variables with the 

output. The k is variable number. 

This technique was first described by Efroymson 

(1960). It is based on the joint application of two selec-

tion techniques: the inclusion Selection and the Back-

ward Elimination of variables, step by step, in the model. 

Thus, it requires that two levels of significance be estab-

lished, one for each technique. 

Alternatively, other parameters can be used to test 

whether a variable is important in model definition, citing 

the coefficient of determination (R2) and analysis of var-

iance. 

III. METHODS 

The methods focus specially on data collecting and anal-

ysis for use on the fourth step of eight step problem-solv-

ing technique. The data was collected from PI Data Ar-

chive software®, which storage all mill process data. The 

sampling time defined was 30s, due to mainly fast re-

sponse of pressure increase events. The chosen independ-

ent variables are based on professional experience and 

design. The software used for all data analysis and for the 

predicting algorithms is Matlab®. 

First, the Relieff algorithm is used to present the main 

independent variables ranked by weight, as a pre-model-

ing approach. This is a pre-modeling approach. The goal 

is to understand the main weighted variables that varies 

when pressure suddenly increases on washer feeding 

stage. For this purpose, it is used data from 16/06/17 to 

capture a short period with enough pressure variations. 

As the operational upper control limit is 0.32 bar, the re-

lief algorithm was programed to classify the pressure on 

binary categories: “p” pressurized, it means that the 

measured pressure is above the upper limit of control and 

“n” which means that the washer is not pressurized, and 

it operates below the upper limit. 

The decision trees and the ANN algorithms are being 

used to evaluate how the chosen attributes can predict the 

feeding stage pressure based on a learning period. De-

pending on the results, another variable can be applied to 

model the process variations. For this purpose, the data 

was separated into two blocks. Each block has three days 

of duration. The first one is used as the learning period. 

On one hand, the chosen period features some high-pres-

sure events, and this is especially important for the learn-

ing algorithms techniques. On the other hand, it is neces-

sary some variability on the attributes for decision tree 

and ANN algorithms capture different kinds of examples. 

The Fig. 3 presents the DDW feeding stage pressure.  

The second period represents a normal process behav-

ior, and it is used as the test period for all the nonpara-

metric techniques. The Fig. 4 presents the real pressure 

values. 

 
Figure 3. Learning period for the predicted variable, the DDW 

feeding stage pressure. 

 
Figure 4. Test period for the predicted variable, the DDW feed-

ing stage pressure. 
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A MAPE (mean absolute percentage error) and re-

gression coefficient R² are the metrics chosen to evaluate 

the predicting power of the decision trees and ANN algo-

rithms. 

For the stepwise regression algorithm, the data used 

is the sum of the learning and test periods. This decision 

is to obtain a parametric model that presents a good but 

not optimal applicability for a wide operational condi-

tion. Therefore, a model with this property can be imple-

mented on a supervisory control system and can be used 

as a tool for optimize the variables control range. 

The problem solving efficacy is measured by the high 

pressure events on a monthly frequency. The criteria for 

counting is when the washer feeding stage pressure is 

above 0.45 bar. 

IV. RESULTS AND DISCUSSION 

The relief technique presents the weight-based rank for 

the dependent variables to predict the suddenly increase 

pressure. The Table 1 shows the prediction results.  

It is suggested that for those specific high-pressure 

events the main variables that explain the phenomenon 

was the first six ones, according to the rank. These vari-

ables were responsible for 78% of relative contribution. 

However, this prediction is highly correlated with the 

variables that had behaviors bounded to feeding stage 

pressure. For example, the drum speed is used for the 

pressure control. In this case, the feedback control param-

eters can be evaluated for search for a better control per-

formance. The variations on Eop production, top reactor 

pressure and air pressure were the main issues related to 

these high-pressure events. It was found that one of root 

causes for the top reactor variations was the lack of pip-

ing cleaning standards. For Eop production variations, it 

can be explained by the low gap between the actual pro-

duction rate and the design washer capacity. Thus, varia-

tions on production can be critical for this equipment. 

The air pressure it is related to the discharge washer ca-

pacity and it was evaluated to increase its compressor ca-

pacity. 

Relieff is effective as a diagnostical and pre-model-

ling tool, as it showed reliable results based on opera-

tional experience. This technique is simple and can be 

applied for similar problem and fits perfectly as a diag- 

 

Table 1. Relieff algorithm results for variables  

weight prediction. 

Rank  Weight 
Relative contri-

bution 
Independent variables 

1 0.11 22% Eop production 

2 0.07 15% Top reactor pressure 

3 0.06 13% Air pressure 

4 0.05 11% Drum speed 

5 0.04 9% Washer vacuum 

6 0.04 8% Condensate 3 flow 

7 0.03 6% Condensate 2 flow 

8 0.03 5% Condensate 1 flow 

9 0.02 5% Condensate 4 flow 

10 0.02 4% Reactor venting aperture 

11 0.01 2% Pulp consistency 

12 0.01 1% Oxygen charge 

 
Figure 5. Test and boosting decision tree curves. 

 
Figure 6. Test and bagging decision tree curves. 

nostical tool for the lean 8 steps problem solving tech-

nique. 

The use of boosted, bagging decision trees and ANNs 

are based on the evaluation of how the attributes can pre-

dict the inlet washer pressure.  

The Fig. 5 shows the results for the test period using 

the boosting tree algorithm. 

The boosting algorithm presented a precise regression 

result for this process with a regression coefficient of 

99.8%. The number of cycles used was 10 and it is pos-

sible use more cycle to increase the prediction quality. 

However, it would require more computational pro-

cessing and the cost-benefit relation in this case should 

be evaluated. 

The bagging algorithm presented a similar behavior 

to the boosting. The error obtained was higher than the 

boosting tree but it is very effective as a modelling tech-

nique. Thus, the processing time was lower than boost-

ing. This pros and cons must be considered depending 

which are the main modeling targets. In this case, as far 

as both modeling techniques presented high precision, a 

lower processing time can be a significant advantage. 

The Fig. 6 presents the bagging algorithm regression re-

sult. 

Both decision trees show difficult to predict the peaks 

and the lower pressure values, mainly below 0.20 bar. It 

is suggested this issue occurred due to lack of these ex-

amples in the learning period. 

A way to eliminate this effect would be choose a 

larger learning period with a large variety of different ex-

amples, however it would be necessary a large computa-

tional processing capacity. For this specific case, it is a 

drawback. 
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Figure 7. Test and ANN curves. 

Table 2. Regression coefficients and MAPE results for non-

parametric modelling techniques. 

 R² MAPE 

Boosting tree 99.8% 0.13% 

Bagging tree 95.1% 1.73% 

ANN 83.1% 2.18% 
 

The Matlab® ANN toolbox uses the “dividerand” 

function to divide the targes into three sets, using random 

indices. For training, it is used the “trainlm” function that 

updates weight and bias values according to Levenberg- 

Marquardt optimization. The ANN final algorithm con-

sidered 100 perceptrons on the hidden layer and 1 per-

ceptron on the output layer (Fig. 7). 

A few simulations with less perceptrons on the hidden 

layer showed poor results compared to decision trees 

techniques. As the simulation time with 100 perceptrons 

was like the decision trees algorithms, the ANN configu-

ration was kept this way. The Table 2 summarize the non-

parametric models performance based on regression co-

efficient (R²) and the mean absolute percentage error 

(MAPE). 

The summary shows that the boosting tree algorithm 

presented the best prediction power for this process, fol-

lowed by the bagging tree and the ANN. Considering that 

MAPE coefficients are lower than 5% for all techniques, 

it is suggested that all techniques was successful to model 

the washer inlet feeding pressure. However, the ANN 

provided the poorest performance according to R². It is 

suggested that this result could be improved if more per-

ceptrons were included on the hidden and output layer 

requiring more time for processing the model. 

The stepwise regression is applied to obtain a linear 

parametric equation for pressure prediction that can be 

used in wide operational scenarios. The first order equa-

tion with the 12 independent variables presented an R² of 

0.56 when applied to both learning and test period. 

The variables air pressure and reactor vent aperture 

showed the lowest confidence intervals for the regression 

coefficients. It is suggested that these results are related 

with the low variance of these parameters considering the 

both training and test periods. 

One advantage of the technique is that it was gener-

ated a first order equation which can be applied to a wide 

operational condition with acceptable precision. Further-

more, these results can be used as a tool to simulate and 

search for optimal dependent variables range considering  
 

 
Figure 8. Learning, test period and stepwise curves. 

the predicted variables. An alternative to improve its pre-

cision it would be to obtain the washer mathematical 

equation with the technologic supplier aiming to custom-

ize the stepwise regression algorithm. It is suggested that 

this approach could deliver better results for some of the 

peaks of day 16/06. The Fig. 8 presents the linear equa-

tion applied to the attributes values. 

Finally, the 8 steps problem solving technique ses-

sions found 10 root causes for suddenly high pressure 

events and four were confirmed by advanced analytics 

tools.  After implementing nine short term actions there 

was 63% of reduction on pressuring frequency, it means, 

it was reduced from 13.7 to 5 events per month. It is sug-

gested that the remaining high pressure events will be 

eliminated with the other long term actions.  

The main achieved benefit is the reduction of mill 

losses of production due to the Eop DD washer pressuri-

zation and the elimination of the ones mill bottlenecking. 

V. CONCLUSIONS 

The reduction of suddenly high pressure events on DD 

washer feeding stage shows the 8 steps problem solving 

technique efficacy. This allows the mill to increase its 

availability and production without investment, critical 

matters for a pulp mill. 

The data analysis on this technique can be reinforced 

using the advanced analytics modelling techniques. On-

this example the relief, decision trees and stepwise re-

gression algorithms proved to be a well-tuned packet for 

problem solving in a pulp mill, especially focused on hy-

pothesis generation and validation. 
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