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Abstract − For pharmaceutical solid products, the 

issue of reproducibly obtaining their desired end-use 

properties depending on crystal size and form is the 

main problem to be addressed and solved in process 

development. Lacking a reliable first-principles 

model of a crystallization process, a Bayesian optimi-

zation algorithm is proposed. On this basis, a short 

sequence of experimental runs for pinpointing oper-

ating conditions that maximize the probability of suc-

cessfully complying with end-use product properties 

is defined. Bayesian optimization can take advantage 

of the full information provided by the sequence of ex-

periments made using a probabilistic model of the 

probability of success based on a one-class classifica-

tion method. The proposed algorithm’s performance 

is tested in silico using the crystallization and formu-

lation of an API product where success is about ful-

filling a dissolution profile as required by the FDA. 

Results obtained demonstrate that the sequence of 

generated experiments allows pinpointing operating 

conditions for reproducible quality. 

Keywords−−Bayesian Optimization, Quality con-

trol, Crystallization, Gaussian Processes. 

I. INTRODUCTION 

Crystallization is one of the most commonly used purifi-

cation methods in the pharmaceutical industry (Gao et 

al., 2017; Lucke et al., 2018). Lacking tight control of 

operating conditions and due to a post-crystallization 

product formulation, there exists a significant level of in-

trinsic variability which makes quite probable for the 

solid product to fail quality tests (Sun et al., 2012). Lack-

ing a reliable first-principles model that properly account 

for the intrinsic process variability, the parameters of the 

operating policy are set by trial-and-error learning or us-

ing derivative-free optimization methods such as the 

Nelder-Mead simplex or pattern search which are very 

inefficient, cannot handle multiple optima and easily get 

astray when facing noisy objective functions (Fujiwara et 

al., 2005). Moreover, the outcome of tests for end-use 

product properties is binary (success or failure) which 

renders known optimization methods inadequate (Co-

lombo et al., 2016). 

One of the main challenges in the development of 

novel products with target end-use properties is effi-

ciently exploring the vast search space of operating con-

ditions in the face of uncontrolled variability as ap-

proaches that rely on trial-and-error are impractical 

(Lookman et al., 2019; Talapatra et al., 2019). Active 

learning and adaptive experimental designs are the alter-

native of choice to effectively navigate the vast search 

space iteratively to identify promising policies for guid-

ing experiments and computations. In materials science 

applications, resorting to a probabilistic surrogate model 

of uncertainty together with a utility function that priori-

tizes the decision-making process on unexplored region 

of interest is commonly used for planning a rather short 

sequence of highly informative experiments (Xue et al., 

2016; Pruksawan et al., 2019).  

In this work, a novel Bayesian optimization algorithm 

is applied to a seeded batch crystallizer with cooling to 

obtain crystal particles with proper size distributions. Ex-

perimental optimization of the operating policy is re-

quired to obtain a final product with the required end-use 

properties such as bioavailability. A Bayesian optimiza-

tion algorithm is proposed to fine tune the process param-

eters. A short sequence of experimental runs for pinpoint-

ing operating conditions that maximizes the probability 

of successfully complying with quality tests is obtained. 

Bayesian optimization takes advantage of the full infor-

mation provided by the sequence of experiments made 

using a probabilistic model (Gaussian process) of the 

probability of success based on a one-class classification 

method. The novel metric which is maximized to decide 

the conditions for the next experiment is designed around 

the expected improvement for a binary response, i.e. is 

based solely on the sequence of binary outcomes (suc-

cess/failure). That is, the proposed method does learn 

from each individual experiment. 

II. METHODS 

A. Bayesian optimization with binary outcomes 

Given an initial Region of Interest (ROI) 𝕏 ⊂  ℝ𝑑for the 

controlled inputs, an unknown objective function 

   𝕏 →[0, 1] descriptive of the probability of comply-

ing with product end-use properties and a maximum 

budget of n experiments, the problem of sequentially 

making decisions 𝐗𝑖 = [𝑥1, 𝑥2, … , 𝑥𝑖]𝑇which are re-

warded by a “success" with probability (x) and “fail-

ure" with probability 1 ̶ (x),  is to recommend, after n 

experiments, the operating conditions x* that maximizes 

. Note that the choice of the operating conditions for 

each experiment xi in the sequence is based solely on 

knowledge of the binary outcomes 𝐲𝑖 = [𝑦1, 𝑦2, … , 𝑦𝑖]𝑇 

from previous runs. The observations at 𝑥𝑖 are assumed 

drawn from a Bernoulli distribution with a success prob-
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ability 𝑝(𝑦 = 1|𝑥𝑖), see Colombo et al. (2016) for de-

tails. The probability of success is related to a latent 

function 𝑓(𝑥): ℝ𝑑 → ℝ  that is mapped to a unit interval 

by a sigmoid transformation. The transformation used is 

the probit function 𝑝(𝑦 = 1|𝑥𝑖) = Φ(𝑓(𝑥𝑖)), where Φ 

denotes the cumulative probability function of the stand-

ard Normal density. 

As there do not exist correct examples of the success 

probability   over ROI but only evaluative feedback 

from binary outcomes {-1, +1}, Gaussian processes 

(GPs) for one-class classification is used here for proba-

bilistic modelling of the objective function of interest. 

The class of interest defines a small region of operating 

conditions with a high probability of success. Accord-

ingly, the main uncertainty is about the location of the 

boundary for this class of interest for reproducibility.   

At the observed inputs, the latent variables 𝐟 =
{𝑓(𝑥𝑖)}𝑖=1

𝑛  are assumed to follow a Gaussian prior distri-

bution. Given a training set D = (X, y), the probabilistic 

model chosen p(yi|D, xi) aims to predict the target value 

yi for a new experiment xi by computing the posterior 

probability 𝑝 = (𝐟|𝐗) = 𝑁(𝐟|𝜇𝑚, 𝐊f,f), where 𝐊f,f is the 

covariance matrix and 𝜇m is the mean function. Since nei-

ther of the class labels is considered more probable, the 

prior mean is often set to zero. As a GP generates an out-

put 𝑧 in the range (−∞, ∞), a monotonically increasing 

response function 𝜎(𝑧) is used to convert the GP outputs 

to values within the interval [-1, 1] which can be inter-

preted as class probabilities (Rasmussen and Williams, 

2006).The latent GP 𝑓 defines a Gaussian probability 

density function 𝑝𝑓
𝑥 for any input 𝑥 ∈ 𝕏. At any given x, 

the corresponding probability density for the positive 

class (success) is defined as 𝑝𝜋
𝑥. 

Bayesian optimization takes advantage of the full in-

formation provided by the sequence of experiments made 

using a probabilistic metamodel (a Gaussian process, see 

Rasmussen and Williams (2006)) of the real system being 

optimized. This metamodeling approach to simulation 

optimization is known as Kriging (Shahriari et al., 2016). 

To balance exploitation with exploration, an acquisition 

function   is used to decide the combination of design 

variables for the next experiment or simulation run. In 

this work, the expected improvement for binary outcomes 

over the policy parameter domain 𝕏 given sampled data 

in 𝐷𝑖  is used as the acquisition function (Tesch et al., 

2013; Wang et al., 2016; Luna and Martínez, 2018). The 

chosen acquisition function was designed to account for 

a trade-off between exploiting what is already known 

about a small region with high probability of success or 

exploring uncharted regions of operating conditions to 

find (hopefully) a reduced ROI with an even higher prob-

ability of success. A pseudo-code of Bayesian Optimiza-

tion is given in Fig. 1.  

Based on n0 initial data points in D0, a first approxi-

mation to the objective function using Gaussian Pro-

cesses is made upon which the acquisition function is 

maximized, and the next combination 𝑥𝑖+1 of decision 

variables is obtained. The corresponding value of the ob- 
 

 
Figure 1: Bayesian optimization of the probability of success. 

 

jective function 𝑦𝑖+1 is obtained and dataset 𝐷𝑖+1 is aug-

mented. The probabilistic metamodel 𝑓 (Gaussian Pro-

cess) is then updated and a new iteration begins. 

B. Process description 

The method is tested with an in silico example for the 

crystallization and formulation of an active Pharmaceuti-

cal Ingredient (API). The API is derived from the reactor 

to the downstream processing steps. The solution con-

taining the API is loaded to a crystallizer. The solid is 

then separated (via filtration and centrifugation) and 

dried. The purified crystals are then mixed with excipi-

ents and compacted into solid dosage form (i.e. tablets). 

The final product should be assessed in a dissolution test 

to verify that it fulfills a dissolution profile required by 

the Food and Drug Administration (FDA) of the Unites 

States. The overall process is shown in Fig. 2. The crys-

tallizer operates in batch mode with an initial crystal 

seeding and following a temperature profile which is like 

the one proposed by Chung et al. (1999). The magma en-

ters at saturation temperature and supersaturation is 

caused by the reduction of solubility due to steadily low-

ering the temperature. The temperature T at any given 

time t is set to perform the following profile: 

 𝑇 = 𝑇0 − (
𝑡

𝑡𝑓
)

𝛾

(𝑇0 − 𝑇𝑓)[°C] (1) 

In Eq. 1, T0 and Tf are the initial and final temperature, 

tf is the batch duration and γ is a process parameter of the 

temperature profile. The four optimization variables con-

sidered are closely related to the crystallizer´s operating 

conditions and are presented in Table 1. Other process 

variables are assumed fixed hereafter. They are summa-

rized in Table 2. 

Algorithm: Bayesian optimization 

• Inputs: n0, n, 𝐷0 = {𝐗0, 𝐲0}, metamodel 𝑓 

 For i = n0 + 1 to n do 

   • Select a new 𝑥𝑖 by optimizing the one- 

   class acquisition function 𝛼(𝑥, 𝐷𝑖 , 𝑓) 

𝑥𝑖+1 = arg 𝑚𝑎𝑥 𝛼(𝑥, 𝐷𝑖 , 𝑓), 𝑥 ∈ 𝕏 

  •  Do the next experiment using 𝑥𝑖+1  

  and test for success/failure, obtaining  

       𝑦𝑖+1 

  • Augment dataset  

𝐷𝑖+1 = {𝐷𝑖 , (𝑥𝑖+1,  𝑦𝑖+1)} 

  •  Update the one-class classification meta 
   model 𝑓 

  End for 

• Maximize the probability of success 

 𝑥∗ = arg 𝑚𝑎𝑥 𝜋(𝑦 = 1|𝑥, 𝐷𝑖 , 𝑓), 𝑥 ∈ 𝕏 

• Output:  𝑥∗ 
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Table 1. Optimization variables 

Variable Symbol 

Mass of crystal seeds [kg] M 

Mean diameter of crystals [m] dm 

Coefficient of variance [%] CV 

Temperature profile parameter γ 

Table 2. Fixed variables 

Variable Symbol Value 

Mass of magma [kg] Ms 7570 

Initial temperature [°C] T0 35 

Final temperature [°C] Tf 15 

Batch duration [min] tf 240 

 

 
Figure 2: Downstream process, product formulation and testing for the case study. 

 

Once the crystallization step is finished and the crys-

tals are filtered and dried, the formulation step begins. 

The API is mixed with excipients and fractionated into 

tablets. A Gaussian error distribution with a 5% standard 

deviation in the API content is introduced in this pro-

cessing step to simulate a source of intrinsic variability in 

the overall process of Fig. 2. Once the tablets have been 

obtained, they are tested in a dissolution assay. The test 

is performed in an agitated vessel that simulates the con-

ditions in the human stomach (pH and temperature) as a 

proxy for bioavailability assessment. The tablets are sub-

jected to grinding, then placed in the test vessel and the 

API concentration is measured at several sampling times. 

The concentration profile of the tablets is then compared 

with a reference profile. Two factors, f1 and f2, are calcu-

lated according to the Guidance for Industry FDA-1997-

D-0187 provided by the FDA (1997): 

 𝑓1 =
∑ |(𝑅𝑝𝑗−𝐶𝑝𝑗)|

𝐽
𝑗=1

∑ 𝑅𝑝𝑗𝑗
 100 (2) 

 𝑓2 =  50 𝑙𝑜𝑔 ([1 +
1

𝐽
∑ (𝑅𝑝𝑗 − 𝐶𝑝𝑗)

2𝐽
𝑗=1 ]

−0.5
100) (3) 

In the Eqns. 2 and 3, Rp is the reference value and Cp 

is the test value for the percent dissolution of the API. In 

order to pass the test, f1 should be less than 15% and f2 

should be higher than 50%. In this work, the reference 

profile for an API with a maximum content of 50 mg in 

1 kg of solvent is shown in Table 3. Intrinsic variability 

of product formulation pose a challenge to repeatedly fol-

low the reference profile. 

C. In silico model 

The crystallizer is simulated using the method of mo-

ments to calculate the main characteristics of the crystal’s 

size distribution. The equations for describing nucleation 

and growth rates are: 

 𝐵 = 6.44 1011𝜎1.6[#/m3.s] (4) 

 𝐺 = 1.21 10−4𝜎1.2[m/s] (5) 

 𝜎 =
𝐶−𝐶𝑠𝑎𝑡

𝐶𝑠𝑎𝑡
 (6) 

Table 3. Reference dissolution profile 

Time [min] Concentration [mg/kg] 

0 0 

15 4.92 

30 9.48 

45 13.70 

60 17.57 

75 21.05 

90 24.34 

120 30.03 

180 38.80 

240 45.30 

In the Eq. 6, C is the API product concentration in the 

magma. The density of the API is 1050 kg/m3 and its sol-

ubility is a function of the crystallizer temperature: 

 𝐶𝑠𝑎𝑡 = 2.2 10−1 + 7.1 10−3 𝑇 + 1.5 10−4𝑇2 [𝑘𝑔/𝑘𝑔]  
  (7) 

Using these equations, the moments µ of the distribu-

tions can be calculated (Hulburt and Katz, 1964). The 

formulation step and the dissolution assay in the test ves-

sel modify the moments according to a dilution factor fd, 

that accounts for both the formulation and the change of 

volume from one tank to another: 

 𝜇′ = 𝜇  𝑓𝑑 (8) 

The dilution factor is calculated as the API dissolu-

tion needed to achieve approximately 50 mg/kg in the test 

vessel (if dissolution is total), adding white noise of 5% 

to account for the intrinsic variability of the process. Fi-

nally, the moments are reduced while diluting. The dis-

solution rate and the API solubility in the new media are 

modeled by: 

 𝐷 = 2.09 10−8 𝜎′[m/s] (9) 

 𝐶𝑠𝑎𝑡
′ = 1.8 10−1 + 4.8 10−3 𝑇 (10) 

III. RESULTS 

The proposed Bayesian optimization method in Fig. 1 is 

applied as follows. For each operating policy tried, a 

crystallizer run is performed. The product crystals are 

dried, formulated and tested according to the dissolution  
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Table 4. Optimization results 

 

assay. If the product successfully passes the dissolution 

assay (observation: +1), the run is considered successful, 

otherwise the experiment is considered a failure (obser-

vation: -1). An initial design of crystallization experi-

ments to begin with, n0, is defined using Latin Hypercube 

Sampling. Using the initial data set, the hyper-parameters 

of the GP metamodel 𝑓 are estimated.  Then, the method 

proposes the next experiment by maximizing the acqui-

sition function. The experiment is performed to generate 

additional data, which is used to update the GP meta-

model. This is repeated until a maximum number n of ex-

periments has been made. The trained GP for the one-

class classification model is then used to solve the opti-

mization problem that aims to maximize the probability 

of success of the process by finding the optimal operating 

policy for the crystallizer. Finally, the estimated optimal 

policy can be tried experimentally several times to esti-

mate the true probability of success for the solution 

found. Typically, due to the intrinsic process variability 

this probability rarely is equal to 1. 

The initial and total number of experiments n0 and n 

are set to 7 and 15, respectively. The expected improve-

ment for binary outcomes is chosen as the acquisition 

function. A summary of the experiments is presented in 

Table 4. After the initial set of experiments, the method 

tries an operating policy until one of the experiments 

doesn´t fulfill the end-use properties. After that, the 

method chooses a new operating policy and performs all 

the remaining experiments with it. Finally, an extra opti-

mization step is carried out and the optimum is found to 

maximize the probability of success. 

The values for the policy parameters are shown at the 

bottom of Table 4. The probability of success of the esti-

mated optimal policy is approximately 100%. This is 

quite remarkable, given the low number of experiments 

performed and the complexity of the experimental opti-

mization task: the probability of success of the operating 

policy must be obtained from binary responses of the ex-

periments in a four-dimensional design space. 

The evolution of the GP is shown in Fig. 3. The GP is 

initially trained with the first seven experiments, giving 

rise to the probability of success presented in Fig. 3(a). 

Only the first two elements of the operating policy (M and 

dm) are shown, while the other two are fixed at the opti-

mal values found for the sake of clarity.  

The initial approximation in the form of a GP to the 

probability of success helps identifying a small region of 

operating conditions with higher probabilities of success, 

but the surface maximum is still flat, and more experi-

ments are clearly needed. The GP is then increasingly up-

dated with new experimental data and the final approxi-

mation to the probability of success after the last iteration 

is presented in Fig. 3(b). As can be seen there exists an 

optimum that is clearly distinguishable, with a maximum 

value for the success probability that is very close to 1. 

As exploitation of the generated knowledge is empha-

sized, the estimated maximum and nearby conditions will 

receive more attention and exploration vanishes.  

It is noteworthy that the last five experiments of the 

available budget are made using the very same operating 

policy (see Table 4). This is due to bias introduced 

through hyper-parameters in the one-class classification 

model. In this work, to separate the positive class from 

the failure class, the following radial basis function is 

used: 

 𝑘(𝑥, 𝑥´) = 𝑒𝑥𝑝 (−
‖𝑥,𝑥´‖2

2ℓ2 ) (11) 

The hyper-parameter ℓ in Eq. 11 defines the charac-

teristic length scale of the positive (success) class. The 

smaller the value of this parameter, the tighter (and 

smaller) the final ROI found by the Bayesian optimiza-

tion algorithm in Fig. 1. Typically, to make enough room 

for exploration is better to choose initially high values for 

ℓ, and then profile down its values as more data is gath-

ered.  As a result, exploitation is favored over exploration 

as the budget for experimentation is being consumed. 

Eventually, gradual reduction of this hyper-parameter 

left almost no room for exploration. Note that the param-

eters of the operating policy must be conveniently scaled 

when defining the one-class classification model using 

the function in Eq. 11. The interested reader is referred to 

related works for details (Kemmler et al., 2013; Xiao et 

al., 2015).  

A comparison of the performance of two operating 

policies is shown in Fig. 4. In Fig. 4(a), an arbitrarily cho-

sen policy with parameters at the center of the design 

space is run 100 times. Run outcomes that do not fulfill 

the f1 or f2 criterion are shown in dark blue, while the ones 

that do comply with dissolution specifications are shown 

in light blue. The optimal policy from Table 4 is shown 

in Fig. 4(b). As can be seen, all these runs made using the 

optimal policy fulfill the dissolution test criteria. 

In order to test the robustness of the proposed ap-

proach, the algorithm was repeated 100 times. The aver-

age probability of success of the resulting operating pol-

icies is 93.9%, with 92 of the results having a probability 

of success of 80% or higher, and 72 of them having a  
 

M dm CV γ y 

186.84 2.38 .10-4 17.01 4.09 1 

217.79 1.05 .10-4 14.89 3.02 -1 

130.11 2.71 .10-4 26.05 4.49 1 

58.41 1.88 .10-4 20.23 3.48 1 

163.38 1.60 .10-4 9.36 5.82 -1 

93.02 0.80 .10-4 11.25 5.20 -1 

29.93 0.36 .10-4 22.49 4.74 -1 

122.61 2.77 .10-4 27.22 4.33 1 

122.61 2.77 .10-4 27.22 4.33 1 

122.61 2.77 .10-4 27.22 4.33 -1 

172.36 2.16 .10-4 17.22 4.33 1 

172.36 2.16 .10-4 17.22 4.33 1 

172.36 2.16 .10-4 17.22 4.33 1 

172.36 2.16 .10-4 17.22 4.33 1 

172.36 2.16 .10-4 17.22 4.33 1 

173.48 2.21 .10-4 17.40 4.29 Optimum 
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Figure 3: Projected approximations of the probability of suc-

cess 𝜋 over the ROI.  (a) after the initial sampling and (b) after 

the optimal operating policy is found.  

 
Figure 4: Dissolution profiles for (a) an arbitrary operating 

policy and (b) the optimal operating policy. Light blue lines 

are runs that successfully passed the test and dark blue lines 

are runs that did not. The target profile is shown with circles. 

 
Figure 5: Histograms for the first (a) and second (b), policy 

parameters (M and dm) of the optimal operating policy; (c) 

the probability of success for the optimal solution found.  

probability of 90% or higher. Histograms of the first two 

policy parameters (M and dm) of the optimal operating 

policies and their probability of success are presented in 

Fig. 5.  

It is worth noting that the proposed experimental op-

timization method is quite robust despite just a few ex-

periments were performed. If the total number of experi-

ments were increased, the results will certainly improve. 

As an example, by doubling the number of experiments 

(from 15 to 30), the average probability of success of the 

optimal operating policies rises to 95.3%, and 96 of the 

results have a probability of success of 80% or higher, 

whereas 83 of them have a probability of 90% or higher. 

As can be expected, there is a trade-off between the cost 

of experimentation and the quality of the solution found. 

IV. CONCLUSIONS 

The applicability of Bayesian optimization in guarantee-

ing end-use product properties of crystallization pro-

cesses has been discussed. Optimization results are prom-

ising bearing in mind the intrinsic level of variability con-

sidered in the formulation step, and that Bayesian optimi-

zation does not require a first-principles model of the 

crystallization and formulation processes. Also, Bayesian 

optimization takes advantage of any available data and 

imperfect models. Furthermore, the proposed approach is 

robust to both noise and outliers. Current research efforts 

are focused on considering multiple objectives and au-

tonomous setting of hyper-parameters. 
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