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Abstract – Stagnation point nanofluid flow over a 

stretching sheet embedded in a porous medium is in-

vestigated in the present model by taking Navier’s ve-

locity slip into account. The spectral relaxation 

method (SRM) is utilized to solve boundary layer 

equations. The variation of nanofluid velocity, con-

centration and temperature corresponding to some 

dominant flow parameters is displayed via graphs. 

The findings reveal that when stretching sheet is mov-

ing faster than free stream then porous permeability, 

unsteadiness, velocity slip and local magnetic param-

eters have tendency to reduce fluid velocity but in op-

posite case, they behave as an assisting parameters for 

flow field. 

Keywords – Spectral relaxation method, unsteady 

flow, stagnation point flow, porous medium. 

I. INTRODUCTION 

Since last 20 years, a special category of fluid called 

“nanofluid” has received a good attention by researchers. 

Masuda et al. (1993) first revealed the peculiar improve-

ment in thermal conductivity of a liquid when the ultra-

fine particles disperse into it. The name "nanofluid" was 

first coined by Choi and Eastman (1995).  Noble proper-

ties of nanofluids viz. long-term stability, higher thermal 

conductivity, and homogeneity with base fluid make the 

nanofluid broadly pertinent fluid in many industries such 

as power generation/production, chemical production, 

electronics, medical fields, and nuclear systems. Hassan 

et al. (2018) have assumed wavy surface to study the flow 

of nanofluid in a porous medium. Alamri et al. (2019) 

analyzed the convective radiative plane Poiseuille flow 

of nanofluid in a porous medium.  Some important stud-

ies related to nanofluid flow have been performed by 

Chamkha et al. (2015), Saritha and Palaniammal (2018), 

Seth and Mandal (2018), Hamad et al. (2011) and Seth et 

al. (2019).  

Fluid flow past over a stretching surface has drawn 

incredible consideration of researchers due to its use in 

many industries such as production of plastic and rubber 

sheets, glass blowing, cooling of metallic plates etc. Sa-

kiadis (1961) studied the boundary layer conduct of fluid 

flow on continuous solid surfaces. Crane (1970) studied 

Blasius type flow due to a stretching sheet. However, in 

many practical situations model of linearly stretching 

sheet does not work, therefore, exponential and nonlinear 

stretching sheet model is explored by several authors. 

Viscous flow behavior over a nonlinearly stretching sheet 

is investigated by Vajravelu (2001) using Runge–Kutta 

integration scheme.  Another model of stretching sheet is 

presented by Khan and Pop (2010) in which they have 

discussed that Sherwood number is decreasing function 

of lower Prandtl number meanwhile it is increasing func-

tion of higher Prandtl number. Ibrahim and Makinde 

(2015) have analyzed MHD flow of Casson nanofluid 

past a stretching sheet.  Recently the study regarding fluid 

flow over the stretching sheet is performed by Hayat et 

al. (2018b). 

Utilization of transverse magnetic field in the flow 

analysis of electrically-conducting nanofluid is very im-

portant because of its overwhelming use in oil explora-

tion, geothermal energy extraction, plasma confinement, 

boundary layer control, nuclear reactors, casting and lev-

itation etc. Heat transfer through emission of electromag-

netic waves i. e. thermal radiation effect is very important 

to consider in several situations.  The combined effect of 

magnetic field and thermal radiation on nanofluid flow is 

studied by several authors viz. Sparrow and Cess (1978), 

Makinde and Mishra (2017) and Qayyum et al. (2018).  

The above-mentioned study is relevant to steady flow 

only but there are several problems in which flow is not 

steady in nature. Pop and Na (1996) studied an interesting 

model of the unsteady flow of nanofluid and provided the 

analytical solution. Unsteady flow of nanofluid over a 

stretchable sheet have been studied by several authors 

viz. Mustafa et al. (2013), Sandeep et al. (2016), etc. 

In the above-cited research papers, no-slip condition 

is considered. However, there are several experiments 

(Churaev et al., 1984) which show that there exists a slip 

velocity between solid-fluid interfaces. Navier (1823) in-

troduced the slip boundary condition in his noble study 

and found that slip velocity is proportional to shear stress. 

A portion of the critical investigations based on slip 

boundary condition are due to Noghrehabadi et al. 

(2013), Hayat et al. (2015) and Zhu et al. (2015). 

Stagnation point flow has immense use in many fields 

such as, manufacturing in plastic substance, metallurgy, 

lubricant polymer extrusion etc. Therefore, so many re-

searchers moved towards analyzing boundary layer effect 

near stagnation point. Saif et al. (2017) have investigated 

stagnation-point flow of second grade nanofluid. 

Makinde et al. (2017) studied stagnation point flow of 

MHD chemically reacting nanofluid. Other useful inves-

tigation of stagnation point flow are due to Makinde 

(2012) and Hayat et al. (2018a). 

The present model is dedicated to study transient 

stagnation point hydromagnetic nanofluid flow which is 

generated due to time dependent movement of free 

https://www.sciencedirect.com/science/article/pii/S2211379717310318


Latin American Applied Research   49:205-211 (2019) 

 

206 

stream and stretching sheet under the influence of 

Brownian diffusion, thermophoretic diffusion and ther-

mal radiation. This situation arises when fluid falls with 

time dependent velocity over a sheet which get stretched 

due to application of forces at the sheet in the opposite 

directions. It has wide applications in polymer and metal 

extrusion, production of plastic sheets, glass blowing, 

boundary layer control and nuclear reactors etc. 

II. MATHEMATICAL FORMULATION 

Consider two-dimensional, hydromagnetic, incompressi-

ble, laminar, viscous and electrically conducting opti-

cally thick heat radiating nanofluid flow over a stretching 

sheet in a porous medium. O is the stagnation point at 

which local velocity of fluid is zero. x and y are the coor-

dinate axes which are chosen in such a way that x-axis 

corresponds to the distance along the sheet, however, y-

axis corresponds the distance normal to the sheet. It is 

also assumed that nanofluid is impinging normally over 

the sheet. Free stream velocity and stretching sheet ve-

locity are time dependent that is assumed as 𝑢∞(𝑥, 𝑡) =
𝑏𝑥

(1−𝜆𝑡)
, and 𝑢𝑤(𝑥, 𝑡) =

𝑎𝑥

(1−𝜆𝑡)
, respectively. Here 𝑎, 𝑏 and 

𝜆 are constants and the dimension of 𝜆 is reciprocal of 

time. A constant magnetic field of intensity 𝐵0 is applied 

normal to y -axis. The nanoparticles and the base fluid 

are assumed to be in thermal equilibrium state. The im-

pact of the induced magnetic field produced by fluid flow 

is ignored.  

Using the above assumptions and Prandtl’s boundary 

layer theory, the governing equations (Buongiorno, 

2006; Seth and Mishra, 2017) for the conservation of 

mass, momentum, energy and nanoparticle concentration 

are as follows 

 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0, (1) 

 𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+

𝜕𝑢

𝜕𝑡
= 𝜐

𝜕2𝑢

𝜕𝑦2
+

𝜕𝑢∞

𝜕𝑡
+ 𝑢∞

𝑑𝑢∞

𝑑𝑥
− 

 
𝜎𝐵0

2(𝑢−𝑢∞)

𝜌𝑓
−

𝜐(𝑢−𝑢∞)

𝑘0
, (2) 

 𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
+

𝜕𝑇

𝜕𝑡
= 𝛼𝑚

𝜕2𝑇

𝜕𝑦2
+

1

(𝜌𝑐)𝑓

16𝜎∗𝑇∞
3

3𝑘∗

𝜕2𝑇

𝜕𝑦2
+ 

 +𝜏 [
𝐷𝑇

𝑇∞
(
𝜕𝑇

𝜕𝑦
)
2

+ 𝐷𝐵
𝜕𝜙

𝜕𝑦

𝜕𝑇

𝜕𝑦
], (3) 

 
Fig. 1: Geometry of the problem. 

 𝑢
𝜕𝜙

𝜕𝑥
+ 𝑣

𝜕𝜙

𝜕𝑦
+

𝜕𝜙

𝜕𝑡
=

𝐷𝑇

𝑇∞

𝜕2𝑇

𝜕𝑦2
+ 𝐷𝐵

𝜕2𝜙

𝜕𝑦2
, (4) 

The appropriate initial and boundary conditions for the 

prescribed problem are assumed as 

 𝑡 ≤ 0: 𝑇 = 𝑇𝑤 , 𝜙 = 𝜙, 𝑢(𝑥, 𝑡) = 0, 𝑣(𝑥, 𝑡) = 0, (5) 

 𝑡 > 0: 

{
 
 

 
 

𝑇 = 𝑇𝑤 , 𝜙 = 𝜙𝑤,       at     𝑦 = 0,   

𝑢 = 𝑢𝑠𝑙𝑖𝑝 + 𝑢𝑤 = 𝑁𝜇
𝜕𝑢

𝜕𝑥
+ 𝑢𝑤, 𝑣 = 0, at 𝑦 = 0,

𝑇 → 𝑇∞, 𝜙 → 𝜙∞,      as     𝑦 → ∞ 
𝑢 → 𝑢∞,         as     𝑦 → ∞

 (6) 

where 𝑣, 𝑢, 𝜇, 𝜐 = 𝜇 𝜌𝑓⁄ , 𝜎, 𝜌𝑓, 𝑇𝑤, 𝑇, 𝑇∞, 𝑘, 𝛼𝑚 =

𝑘 (𝜌𝑐)𝑓⁄ , 𝐷𝐵, 𝜏 = (𝜌𝑐)𝑝 (𝜌𝑐)𝑓⁄ , (𝜌𝑐)𝑓, 𝐷𝑇 , 𝜙𝑤, 𝜙, 𝜙∞, 

𝑘0, 𝜎∗, 𝑘∗and 𝑁 are the velocity component along y axis, 

velocity component along x  axis, dynamic viscosity, kin-

ematic coefficient of viscosity, electrical conductivity, 

fluid density, nanofluid temperature at the surface,  

nanofluid temperature within the boundary layer,  

nanofluid temperature in free stream, thermal conductiv-

ity, thermal diffusivity, Brownian diffusion coefficient, 

ratio of specific heat capacity  of nanoparticles to specific 

heat capacity of fluid, base fluid specific heat capacity, 

thermophoretic diffusion coefficient, nanoparticle con-

centration at the surface of the sheet, nanoparticle con-

centration,  nanoparticle concentration in free stream, 

time dependent porous permeability, Stefan-Boltzmann 

constant, mean absorption coefficient and velocity slip 

factor respectively. 

For finding the similar solutions of Eqs. (2), (3) and 

(4) with constraints (5) and (6), we have used following 

similarity transformations 

 
𝜓 = √𝜐𝑥𝑢𝑤(𝑡, 𝑥)𝑓(𝜂), 𝜂 = 𝑦√

𝑢𝑤(𝑡,𝑥)

𝜐𝑥
,

𝑠(𝜂) =
𝜙−𝜙∞

𝜙𝑤−𝜙∞
, 𝜃(𝜂) =

𝑇−𝑇∞

𝑇𝑤−𝑇∞
 ,

} (7) 

Here 𝜓 is a stream function which is defined as 

 (𝑢, 𝑣) = (
𝜕𝜓

𝜕𝑦
, −

𝜕𝜓

𝜕𝑥
) (8) 

Here 𝑓(𝜂) is a dimensionless stream function, 𝜂 similar-

ity variable, 𝑠(𝜂) is dimensionless nanoparticle concen-

tration and 𝜃(𝜂) is non-dimensional temperature.  For ob-

taining the similar solution, we have taken time depend-

ent porous permeability 𝑘0 = 𝑘𝑝(1 − 𝜆𝑡) and velocity 

slip factor 𝑁 = 𝑁1 (
1

(1−𝜆𝑡)
)
−1/2

,  where 𝑘𝑝 and 𝑁1 are the 

porous permeability and initial velocity slip factor, re-

spectively. 

Using Eqs. (7) and (8) in Eqs. (2)-(6), we get  

 𝑓′′′ − 𝑓′2 + 𝑓𝑓′′ − (𝑀 + 𝐾)(𝑓′ − 𝑟) − 

 𝐴 (𝑓′ +
𝜂

2
𝑓′′ − 𝑟) + 𝑟2 = 0, (9) 

 
1

Pr𝑒𝑓𝑓
𝜃′′ +𝑁𝑏𝑠′𝜃′ + 𝑓𝜃′ + 𝑁𝑡𝜃′2 −

𝐴

2
𝜂𝜃′ = 0, (10) 

 𝑠′′ + 𝐿𝑛𝑓𝑠′ −
𝐴𝐿𝑛

2
𝜂𝑠′ +

𝑁𝑡

𝑁𝑏
𝜃′′ = 0. (11) 

Corresponding boundary constraints are: 

 

𝜃(𝜂) = 1, 𝑠(𝜂) = 1, 𝑓(𝜂) = 0,                       

𝑓′(𝜂) = 1 + 𝛾𝑓′′(𝜂),     at   𝜂 = 0

𝜃(𝜂) → 0, 𝑠(𝜂) → 0, 𝑓′(𝜂) → 𝑟  as   𝜂 → ∞,

} (12) 

where 𝑟 = 𝑏 𝑎⁄ , 𝑀 = 𝜎𝐵0
2(1 − 𝜆𝑡) (𝜌𝑓𝑎)⁄ , 𝐾 =

𝜐 (𝑎𝑘𝑝)⁄ , 𝐴 = 𝜆 𝑎⁄ , Pr = 𝜐 𝛼⁄ , Pr𝑒𝑓𝑓 = 𝑃𝑟 (1 + 𝑅)⁄ , 
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𝑅 = 16𝑇∞
3𝜎∗ (3𝑘𝑘∗)⁄ , 𝑁𝑡 = 𝜏𝐷𝑇(𝑇𝑤 − 𝑇∞) (𝑇∞𝜐)⁄ ,

𝑁𝑏 = 𝜏𝐷𝐵(𝜙𝑤 − 𝜙∞) 𝜐⁄ , 𝛾 = 𝑁1𝜌𝑓(𝑎𝜐)
1/2 and 𝐿𝑛 =

𝜐 𝐷𝐵⁄  are the stagnation parameter,  local magnetic pa-

rameter, porous permeability parameter, unsteadiness pa-

rameter, Prandtl number, effective Prandtl number, radi-

ation parameter, thermophoretic parameter, Brownian 

motion parameter, velocity slip parameter and nanofluid 

Schmidt number respectively.  

The important physical quantities, i.e., local Nusselt 

number 𝑁𝑢𝑥, local skin friction coefficient 𝐶𝑓𝑥 , and the 

local Sherwood number 𝑆ℎ𝑥 are as follows 

 𝑁𝑢𝑥 =
𝑥𝑞𝑤

𝑘(𝑇𝑤−𝑇∞)
, 𝐶𝑓𝑥 =

𝜏𝑤

𝜌𝑢𝑤
2 (𝑥,𝑡)

,  

 𝑆ℎ𝑥 =
𝑥𝑞𝑚

𝐷𝐵(𝜙𝑤−𝜙∞)
. (13) 

where 𝑞𝑤, 𝜏𝑤 and 𝑚𝑤 are the surface heat flux, shear 

stress, and mass flux respectively which are defined as  

 𝜏𝑤 = 𝜇 (
𝜕𝑢

𝜕𝑦
)
𝑦=0

, 𝑞𝑤 = − [(𝑘 +
16𝜎𝑇3

3𝑘∗
)
𝜕𝑇

𝜕𝑦
]
𝑦=0

, 

 𝑚𝑤 = −𝐷𝐵 (
𝜕𝜙

𝜕𝑦
)
𝑦=0

.  (14) 

Using Eqs. (7), (8) and (14); Eq. (13) reduces to 

 𝐶𝑓𝑥𝑅𝑒𝑥
1/2

= 𝑓′′(0), 𝑆ℎ𝑥𝑅𝑒𝑥
1/2

= −𝑠′(0), 

 𝑁𝑢𝑥𝑅𝑒𝑥
1/2

= −(1 + 𝑅)𝜃′(0), (15) 

where 𝑅𝑒𝑥 =
𝑢𝑤(𝑥,𝑡)𝑥

𝜐
 is local Reynolds number. 

III. THE NUMERICAL SOLUTION 

Spectral methods take on a global approach to deal with 

problem i.e. the value of a derivative at a certain point in 

space depends on the solution at all the other points in 

space, and not just the neighboring grid points., for this 

reason, spectral methods have excellent error properties, 

with the so-called “exponential convergence” being the 

fastest possible, when the solution is smooth. Spectral 

methods are distinguished not only by the fundamental 

type of the method (Galerkin, collocation, Galerkin with 

numerical integration), but also by the particular choice 

of the trial functions. Due to this fact, spectral methods 

usually have a very high order of approximation. In fact, 

spectral methods were among the first to be used in prac-

tical flow simulations. Because of its simplicity, rapid 

convergence and high accuracy, we conclude that SRM 

has great potential of being used in place of the traditional 

methods such as finite difference method, shooting tech-

nique along with Runge Kutta method, finite element 

method, etc. in solving nonlinear boundary value prob-

lems. 

The nonlinear equations (9) to (11) along with bound-

ary conditions (12) are solved by SRM (spectral relaxa-

tion method). The brief explanation of this spectral 

scheme is given in the article by Motsa and Makukula 

(2013).  

Gauss Seidel approach is utilized in this method to 

linearise and decouple system of differential equations. 

We have denoted current iteration label by (𝑛 + 1) and 

the previous iteration which are assumed to be known is 

denoted by 𝑛. For applying SRM algorithm, we have as-

sumed following:  

 𝑓′𝑛+1 = 𝑝𝑛 , 𝑓𝑛+1(0) = 0. (16) 

The linearised and decoupled form of Eqs. (9) to (11) 

along with boundary conditions (12) is given by:  

 𝑝′′𝑛+1 + (𝑓𝑛+1 +
𝜂

2
𝐴)𝑝′𝑛+1 − (𝐴 +𝑀 +𝐾)𝑝𝑛+1 =  

 𝑝𝑛
2 − (𝑀 + 𝐾)𝑟 − 𝐴𝑟 − 𝑟2 (17) 

 
1

Pr𝑒𝑓𝑓
𝜃′′𝑛+1 + [(𝑁𝑏)(𝑠′𝑛+1) + 𝑓𝑟+1 −

𝐴

2
𝜂] 𝜃′𝑛+1 = 

 −𝑁𝑡(𝜃′𝑛)
2 (18) 

 𝑠′′𝑛+1 + (𝐿𝑛𝑓𝑛+1 −
𝐴𝐿𝑛

2
𝜂) 𝑠′𝑛+1 = −

𝑁𝑡

𝑁𝑏
𝜃′′𝑛+1. (19) 

The boundary conditions:  

 

𝑝𝑛+1(𝜂) = 1 + 𝛾𝑝𝑛+1(𝜂), 𝑠𝑛+1(𝜂) = 1,               

𝜃𝑛+1(𝜂) = 1,      at   𝜂 = 0,

 
𝑝𝑛+1(𝜂) → 𝑟, 𝑠𝑛+1(𝜂) → 0,

           𝜃𝑛+1(𝜂) → 0    as   𝜂 → ∞. }
 

 
 (20) 

To solve these decoupled equations, Chebyshev spec-

tral collocation technique is used in which domain is 

transformed from the interval [0   𝐿∗] to [−1   1], with 

suitable transformation where 
*L  is scaling parameter. 

Equations (16) to (19) can be transformed in the follow-

ing form:  

 𝐴1𝑓𝑟+1 = 𝐵1, 𝐴2𝑝𝑟+1 = 𝐵2,  

 𝐴3𝜃𝑟+1 = 𝐵3, 𝐴4𝜙𝑟+1 = 𝐵4,  

where  

𝐴1 = 𝐷
1, 𝐵1 = 𝑝𝑛 

 𝐴2 = 𝐷2 + diag (𝑓𝑛+1 +
𝜂

2
𝐴)𝐷 − diag(𝐴 + 𝑀 + 𝐾)𝐼  

 𝐵2 = 𝑝𝑛
2 − (𝑀 + 𝐾)𝑟 − 𝐴𝑟 − 𝑟2,  

𝐴3 = diag (
1

Pr𝑒𝑓𝑓
) 𝐷2 + diag [(𝑁𝑏)(𝑠′𝑛+1) + 𝑓𝑟+1 −

𝐴

2
𝜂] 𝐷, 

𝐵3 = −𝑁𝑡(𝜃′𝑛)
2, 

𝐴4 = 𝐷2 + diag (𝐿𝑛𝑓𝑛+1 −
𝐴𝐿𝑛

2
𝜂)𝐷, 𝐵4 = −

𝑁𝑡

𝑁𝑏
𝜃′′𝑛+1. 

Here diag( ) and 𝐼 are diagonal and identity matri-

ces respectively of order (𝑃 + 1) × (𝑃 + 1), where 𝑃 is 

the number of grid points. The initial guess that are cho-

sen to solve Eqs. (26) to (29) that satisfy boundary con-

dition (30) is given by:  

𝑓0 = 𝑟𝜂 +
(1−𝑟)

(1+𝛾)
(1 − 𝑒−𝜂), 𝑝0 = 𝑟 +

(1−𝑟)

(1+𝛾)
𝑒−𝜂, 

𝜃0 = 𝑒−𝜂, 𝑠0 = 𝑒−𝜂. 

IV. VALIDATION OF NUMERICAL SOLUTION 

To conduct the validity and accuracy of the present anal-

ysis a comparison is performed for the numerical values 

of local Sherwood numbers and local Nusselt number 

with those of Khan and Pop (2010). The numerical values 

of the evaluated results are displayed in Table 1. It is ob-

vious from Table 1 that there is a good agreement be-

tween present analysis and those of Khan and Pop (2010). 

V. RESULTS AND DISCUSSION 

In this section profiles of nanofluid velocity, concentra-

tion and temperature are discussed for different parame-

ters. The default values of parameters are taken as 𝐴 =
1, Pr = 6.7, 𝑀 = 0.5, 𝑁𝑡 = 0.2, 𝑁𝑏 = 0.2, 𝐿𝑛 = 2, 𝑟 = 0.5, 

𝐾 = 0.5 and 𝛾 = 0.1. Figures 2-6 describe velocity distri-

bution of nanofluid with respect to parameters 𝑟, 𝐴, 𝑀, 𝛾 

and 𝐾, respectively. Figure 2 displays the nanofluid ve-

locity for different values of parameter 𝑟. It can be seen  
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Table1: Comparision of values of local Nusselt number -𝜃′(0) 
and local Sherwood number -𝑠′(0) when Pr = 𝐿𝑛 = 10, 𝑀 =

𝐾 = 𝐴 = 𝑟 = 𝑅 = 𝛾 = 0. 

𝑁𝑏 𝑁𝑡 Khan and 

Pop (2010), 

-𝜃′(0) 

Present re-

sult, -𝜃′(0) 
Khan and 

Pop (2010), 

-𝑠′(0) 

Present re-

sult, -𝑠′(0) 

0.1 0.1 0.9524 0.9521 2.1294 2.1291 

0.2 0.6932 0.6932 2.2740 2.2740 

0.3 0.5201 0.5203 2.5286 2.5282 

0.2 0.1 0.5056 0.5053 2.3819 2.3816 

0.2 0.3654 0.3651 2.5152 2.5151 

0.3 0.2731 0.2732 2.6555 2.6557 

 
Fig. 2: Velocity profiles for 𝑟. 

 
Fig. 3: Velocity profiles for 𝐴. 

 
Fig. 5: Velocity profiles for 𝑀. 

here that stagnation parameter has tendency to enhance 

fluid velocity. 

In the present problem 𝑟 < 1 corresponds to stretch-

ing sheet velocity is higher than free stream velocity but 

𝑟 > 1 represents the opposite case i. e. free stream is mov-

ing faster than stretching velocity. It should be noted 

from Figs 3-6 that the velocity distribution for 𝑟 < 1 is 

exactly opposite than that of 𝑟 > 1. From Fig. 3, it can be 

seen that when 𝑟 < 1 unsteady parameter causes reduc-

tion in fluid velocity because A  is directly proportional 

to 𝜆 and 𝜆 is inversely proportional to stretching velocity. 

When 𝑟 > 1, the effect for parameter A , on velocity pro-

file is exactly opposite because of the reversal of bound-

ary layer i.e. when 𝑟 > 1, free stream velocity is dominant 

over stretching sheet velocity. From Fig. 4, it is clear that 

local magnetic parameter reduces the fluid velocity when 

𝑟 < 1.  Enhancement in the magnetic field inhibits the 
 

 
Fig. 5: Velocity profiles for 𝛾. 

 
Fig. 6: Velocity profiles for 𝐾. 

 
Fig. 7: Temperature profiles for 𝑁𝑏. 

 
Fig. 8: Temperature profiles for 𝑅. 
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Fig. 9: Temperature profiles for 𝑁𝑡. 

 
Fig. 10: Concentration profiles for 𝑁𝑏. 

 
Fig. 11: Concentration profiles for 𝑁𝑡. 

fluid motion so there is reduction in fluid velocity 

throughout the boundary layer. This phenomenon is en-

countered due to electromagnetic body force (drag force) 

generated by magnetic field acting in moving fluid. 

When 𝑟 > 1, increment in parameter 𝑀 causes en-

hancement in fluid velocity due to boundary layer rever-

sal (Seth et al., 1981). From Fig. 5 it is noticed that when 

𝑟 < 1 parameter 𝛾 causes reduction in fluid velocity. It is 

because of the fact that increment in 𝛾 means enhance-

ment in the slip between the nanofluid and surface of the 

sheet. Thus, only a partial stretching velocity is trans-

ferred to the nanofluid resulting in a reduced velocity. It 

is also noticed from Fig. 5 that when 𝑟 > 1, parameter 𝛾 

acts as assisting parameter for fluid motion. It is observed 

from Fig. 6 that enhancement in porous permeability pa-

rameter (𝐾) reduces the fluid velocity when 𝑟 < 1. Per-

meability is a measure of the ability of a porous material 

to allow fluid to pass through it. Porous permeability pa-

rameter represents resistance to flow because it restricts 

the motion of the fluid along the surface, therefore, it is 

revealed here that fluid velocity decreases with increment 

in porous permeability parameter because it restricts the 

motion of the fluid along the surface. When 𝑟 > 1, this 

effect is totally reversed. 

Figures 7 and 8 are drawn to exhibit the nanofluid 

temperature behavior corresponding to parameters 𝑁𝑏 

and 𝑅, respectively. Since parameter 𝑁𝑏 corresponds to 

Brownian motion phenomenon. Hence increment in 𝑁𝑏 

means increment in frequent collisions between nanopar-

ticles. It is obvious that due to collision of nanoparticles, 

heat generates and hence increment in temperature is 

found.  Graphically this phenomenon is presented in Fig. 

7. It can be seen from Fig. 8 that increment in parameter 

𝑅 increases fluid temperature. Generally, it is noted that 

more heat is observed by fluid in the presence of thermal 

radiation so due to temperature gradient, diffusion flux 

occurs. Therefore, increment in fluid temperature can be 

noticed with increment in radiation parameter. Figure 9 

indicates the effect of parameter 𝑁𝑡 on temperature pro-

file.  Since thermophoretic phenomena directly relates 

with Soret effect in liquids therefore, increment in 𝑁𝑡 
leads to transport thermal energy due to diffusion of na-

noparticle caused by thermophoretic effect. Therefore, it 

can be seen from Fig. 9 that enhancement in 𝑁𝑡 leads to 

enhance the fluid temperature. 

To observe the effect of parameters 𝑁𝑏 and 𝑁𝑡 on 

fluid concentration, Figs. 10 and 11 are plotted. Fig. 10 

indicates that parameter 𝑁𝑏 has tendency to retard fluid 

concentration because species between nanoparticles are 

reduced due to frequent collisions of nanoparticles. From 

Fig. 11 it is observed that increment in parameter 𝑁𝑡 in-

creases fluid concentration. This result is encountered 

due to thermophoretic phenomena which leads to weaken 

the transport of nanoparticle near the sheet. Therefore, in-

crement in nanoparticle volume fraction can be observed. 

Figure 12 shows the streamline pattern of the flow. It can 

be seen here that the streamlines are found to be normal 

to the surface. Moreover, fluid strikes the stretching sur-

face in an aligned manner. 

Tables 2 and 3 are presented to notice variation in 

skin friction coefficient, local Nusselt number and local 

Sherwood numbers for different values of parameters. 

All the tables in this manuscript is constructed by making 

code of spectral relaxation method in MATLAB soft- 
 

 
Fig. 12: Streamline pattern of the flow. 
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Table 2: Skin friction variation for different parameters 

𝑀 𝐾 𝛾 𝑟 𝐴 𝑓′′(0) 
1     -0.70516 

1.5     -0.73604 

2     -0.76428 

 0.5    -0.67107 

 1    -0.70516 

 1.5    -0.73604 

  0.1   -0.78054 

  0.5   -0.47456 

  1   -0.32035 

   0.5  -0.67107 

   1  0 

   1.5  0.781715 

    1 -0.67107 

    2 -0.72122 

    3 -0.76536 

Table 3: Values of reduced Nusselt number and reduced Sher-

wood number for different parameters. 

𝑅 𝐿𝑛 𝑁𝑏 𝑁𝑡 −𝜃′(0) −𝑠′(0) 
0.5    0.39368 0.00286 

1    0.33582 0.05176 

1.5    0.29371 0.08756 

 1   0.1574 0.06012 

 1.5   0.15371 0.13882 

 2   0.15104 0.21577 

  0.1  0.15639 0.27199 

  0.2  0.15104 0.21577 

  0.3  0.14588 0.16433 

   0.1 0.16155 0.07938 

   0.2 0.15104 0.21577 

   0.3 0.14109 0.26089 

ware. It can be observed from Table 2 that parameters 𝑀, 

𝐾, 𝑟, 𝐴 tends to increase the skin friction in magnitude 

but parameter 𝛾 decreases it significantly.  From table 3 

it can be noticed that parameters 𝑅, 𝐿𝑛, 𝑁𝑡 have tendency 

to reduce heat transfer and enhance mass transfer at the 

surface, however, parameter 𝑁𝑏 has tendency to reduce 

both heat and mass transfers at the surface.       

VI. CONCLUSIONS 

Unsteady stagnation point nanofluid flow over a stretch-

ing sheet embedded in a porous medium is investigated.  

The following outcomes are revealed:  

• When 𝑟 < 1, the local magnetic parameter, porous 

permeability, sip and unsteadiness parameters retard 

the fluid motion while when, 𝑟 > 1, they do the vice-

versa. 

• Parameters 𝑁𝑏, 𝑁𝑡 and 𝑅 have tendency to enhance 

the fluid temperature. On the other hand, concentra-

tion profiles decrease with increment in 𝑁𝑏, how-

ever, it increases with increment in 𝑁𝑡. 
• Parameters 𝑀, 𝐾, 𝑟 and 𝐴 increase the skin friction 

in magnitude but parameter 𝛾 decreases it. Parame-

ters 𝑅, 𝐿𝑛, 𝑁𝑡 have tendency to reduce heat transfer 

and enhance mass transfer at the surface but param-

eter 𝑁𝑏 has tendency to reduce both heat and mass 

transfers at the surface. 
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