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Abstract−− This paper presents a methodology to 

identify critical contingencies that produce short-

term voltage stability problems (STVS). The pro-

posed methodology classifies the state of the power 

system for each contingency, assessing the voltage sta-

bility of the post-contingency dynamic response from 

the calculation of the maximal Lyapunov exponent 

(MLE) and dynamic voltage indices at each bus and 

the whole system. In order to determine the critical 

contingencies, the values of the indices and the results 

of the classification of the post-contingency state are 

statistically analysed. The methodology is tested in the 

New England 39-bus system, obtaining satisfactory 

results in relation to the identification not only of the 

most critical contingencies but also of vulnerable 

buses to voltage instability. New contributions of this 

work are the contingency classification methodology, 

the algorithm for calculating dynamic indices and the 

method of classification of the operating state as a 

function of the STVS problem magnitude. 

Keywords−− Contingencies, Power systems, Lya-

punov exponent, Short-term voltage stability. 

I. INTRODUCTION 

In recent years, power systems have been operated near 

their stability limits due to the progressive increase in de-

mand, a lack of investment in transmission infrastructure 

and an increase in the complexity of the operation. In 

these conditions, an unexpected contingency, such as the 

loss of critical transmission lines or generators, can cause 

an avalanche of cascade outputs of components, the pro-

gressive increase of system stress, and a continuous de-

crease of bus voltages until exceeding the operation 

thresholds reaching voltage instability. 

Voltage stability refers to the power system’s ability 

to maintain voltage in acceptable values for the buses in 

the whole system under a disturbance from a given oper-

ating condition (Kundur et al., 2004). 

Voltage stability has become a serious concern for the 

electricity sector, as several of the major collapses related 

to voltage instability (Glavic et al., 2012; Taylor, 1994), 

have caused large economic and social losses. 

Voltage instability and collapse are usually caused by 

two types of disturbance: faults or contingencies and load 

variations, which are large and small disturbances. As re-

gards the time in which it occurs, voltage instability can 

be a short-term (few seconds) or long-term (tens of sec-

onds to minutes) phenomenon (Kundur et al., 2004). 

Large disturbances due to faults in electric grids or pro-

grammed disconnections impact the dynamic security of 

power systems. Therefore, the prior analysis of the sever-

ity of each contingency in offline studies allows trans-

mission system operator (TSO) to be alerted to assess and 

implement preventive control strategies. Moreover, con-

tingency analysis allows developing real-time corrective 

or emergency control strategies based on events to miti-

gate the effects of contingencies. The classification of 

dangerous contingencies or those which lead to instabil-

ity according to the level of risk or se-verity is known as 

contingency ranking (Amjady, 2003). 

Most known methods to determine the severity of 

contingencies are based on limits of active power flow. 

The DC power flow commonly used to classify contin-

gencies according to the overload level of transmission 

lines (Brandwajn, 1988; Galiana, 1984), does not include 

the analysis of reactive power flow, which is one of the 

main variables in relation with voltage stability problems. 

In addition, contingency classification methods have 

been proposed based on the sensitivity analysis (Nam et 

al., 2000). However, these methods are subject to error 

due to the approximation that is made by not considering 

the higher order terms of Taylor series. The above meth-

ods assess contingencies with a static approach. In order 

to analyse the dynamic effects of the contingencies, time-

domain methods have been proposed. In Tiwari and Aj-

jarapu (2007, 2016) the contingencies are analysed with 

a dynamic approach using indices to identify problems of 

fault-induced delayed voltage recovery (FIDVR), alt-

hough these proposals do not analyse STVS nor fast volt-

age collapse. 

Some methods have been proposed in Yang et al. 

(2018) and Zhu et al. (2017) to assess STVS through the 

calculation of indices, although these indices do not al-

low classifying in different levels the status of stability. 

For that reason, the efficient classification of contingen-

cies that originates volt-age stability problems within the 

framework of the dynamic security assessment is still a 

subject for research. 

Furthermore, some investigations such as Ni et al. 

(2017), Verdejo et al. (2015), Yibei et al. (2011) and 

Zheng et al. (2018) have demonstrated the chaotic nature 

of power systems, in which methods based on chaos the-

ory have been used to identified stability problems. In 

Dasgupta et al. (2013) the fast voltage collapse is as-

sessed through the estimation of the Lyapunov exponent 

computed by an algorithm that described problems with 

its parameters. 

Studies of power system chaotic behaviour have 

demonstrated that it occurs not only for simplified power 

systems but also for more realistic ones with more than 
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one hundred buses, in which in the analysed models were 

included the control devices and were modelled the dy-

namics of the power systems components and devices 

(Dasgupta et al., 2013; Ge et al., 2017; Verdejo et al., 

2015). 

In previous work of this research was analysed a Lya-

punov-based method to assess fast voltage collapse from 

the time series using different embedding parameters, in 

which was identified chaotic attractors in a embedding 

space (Pinzón and Colomé, 2018). 

In the analysis of the state-of-the-art is observed that 

there is no method to rank, in a hierarchical way, contin-

gencies that produced STVS problems. From above, a 

new methodology of contingency ranking to be applied 

in offline studies based on the effects produced in voltage 

stability by contingencies is proposed in this paper. The 

methodology is characterized by classifying each contin-

gency in different operating states through the computa-

tion of the maximal Lyapunov exponent (MLE) and dy-

namic voltage indices. The main contributions of this 

work are: 

• The assessment of fast voltage collapses by means 

of the estimation of the MLE from time series of dy-

namic simulations. 

• Dynamic performance assessment using four volt-

age recovery indices. 

• A methodology to identify critical contingencies 

through a hierarchical computation of STVS indices. 

The remainder of this paper is organized as follows. 

The problem of STVS and the mechanisms that produce 

instability are described in Section II. The methodology 

proposed for classifying contingencies is provided in 

Section III. The results are obtained applying the classi-

fication methodology in the New England 39-bus test 

system and these are shown in Section IV. Conclusions 

are presented at the end of the paper. 

II. PROBLEM STATEMENT 

A. Short-term voltage stability (STVS) 

STVS occurs just few seconds after a disturbance and it 

is generally produced in operating conditions in which 

motor loads and electronically controlled loads constitute 

a large proportion of the local load. Thus, the dynamic 

load connected to the power system is increased by mo-

tors in the residential sector (pumps, air conditioners) and 

in the industrial sector cause increased vulnerability due 

to STVS (Potamianakis and Vournas, 2006). This type of 

instability is a matter of growing concern, but it is often 

ignored by the industry. Its analysis is still a challenge 

because of the difficulty in modelling components, fast 

interactions and dynamics, nonlinearity, high dimension-

ality and uncertainty in the operation of power systems. 

Therefore, it is a complex phenomenon in large power 

systems, and its assessment generates difficulties to the 

TSO (de Leon and Taylor, 2002; Pinzón and Colomé, 

2017). 

B. Mechanisms of large-disturbance STVS 

Different mechanisms can cause voltage stability prob-

lems. In power systems with a high proportion of dy-

namic load when a fault occurs, it is usually followed by 

a voltage dip, which is characterized by the induction mo-

tors stall and if the curves of the mechanical and electric 

torque intersect after a short time, the voltage will recover 

to a value near the pre-disturbance voltage. The first 

mechanism is just the delay in the voltage recovery 

known as FIDRV, shown in Fig. 1, in which because of 

the dynamic response of different components under a 

fault and subsequent clearance in the New England 39-

bus test system on the line 16-17 unacceptable voltage 

values are presented. The FIDVR is a condition that in-

creases the system stress, the improper operation of 

power equipment, mal-operation of protection relays and 

if the control systems do not operate adequately, it will 

produce outage of components (Glavic et al., 2012). 

The second mechanism is the instability due to a fault 

in a transmission line and fault clearance, shown in Fig. 

2 with a fault in the line 03-18. This instability mecha-

nism is related to the increase in total transmission im-

pedance due to a topology change. Because of the in-

crease in impedance, dynamic loads such as induction 

motors increase the reactive power consumed and the 

curves of the mechanical and electrical torque do not in-

tersect after the disturbance, which causes the cascade 

motors stall at different buses and finally voltage insta-

bility. 

 
Fig. 1. Voltage profile (for buses 11-20 New England 39-bus 

system). 

 
Fig. 2. Voltage profile (for buses 31-39 New England 39-bus 

system). 
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III. PROPOSED METHODOLOGY FOR 

CLASSIFYING CONTINGENCIES 

Voltage stability problems occur due to faults in the 

power system or to different system conditions and char-

acteristics such as stress level, the load composition and 

the performance of excitation systems of generators and 

other control devices. In relation to voltage stability, the 

operating conditions and the evolution of the electrical 

variables after a contingency define the system state. 

A methodology for classifying contingencies accord-

ing to the level of voltage stability from the analysis of 

post-contingency dynamic response time series is pro-

posed in Fig. 3. The methodology includes consideration 

of uncertainties in the operating state from a stochastic 

process that applies the Monte Carlo simulation (MC). 

Then, the classification of contingencies is performed 

from the limit values of dynamic indices (dynamic volt-

age index in each bus - DVIb and wide-area dynamic volt-

age index - WADVI) and the MLE. 

The methodology for classifying and ranking contin-

gencies includes the following steps: 

a) Power system modelling, including fast dynamics 

components, such as Motors, AVR and generator dynam-

ics. 

b) Generation of cases (Nc) with different load condition 

from a probability distribution function. Considering that 

the dynamic response of the power system is highly in-

fluenced by a large volume of uncertainties, it is a need 

to apply stochastic techniques such as MC to generate 

scenarios that cover a high variety of operating condi-

tions. 

c) Optimal power flow (OPF) calculation to obtain the 

dispatch of generators according to their load condition 

and the technical and economic constraints. 

 
Fig. 3. Flowchart of the classification methodology. 

d) Random generation of N-1 contingencies in transmis-

sion lines (random fault location) or generators and time-

domain dynamic simulation of contingencies. 

e) MLE and dynamic voltage indices calculation during 

the simulation time (5 s). 

f) Contingency classification based on the STVS post-

contingency assessment through the analysis of the MLE 

and dynamic voltage indices. 

g) Statistical processing of classification results of all 

simulated cases from the clustering of operating state for 

each contingency and the number of vulnerable cases per 

bus. 

h) Identification of the most severe contingencies based 

on mean values of the WADVI index and the number of 

unstable cases produced by each contingency. 

i) Identification of vulnerable buses based on the analysis 

of the mean of the DVIb index for each bus and according 

to the post-disturbance operation state. 

A. Lyapunov exponents 

Nonlinear analysis can be comparatively easy if the state 

space equations of the system dynamics are known but it 

is a difficult task when only the univariate measurement 

time series are known. The Lyapunov exponents (LE) are 

useful in a nonlinear analysis of time series. When expo-

nents are positive by definition they are evidence of 

chaos and instability in the system (Rosenstein et al., 

1993) 

The LE quantifies the exponential divergence of tra-

jectories, in the state space, with a small initial distance 

(𝜖) and it estimates the magnitude of chaos in a system. 

The presence of a positive characteristic exponent is evi-

dence of instability. For exponents’ calculation, all 

neighbor points of the time series that are very close to a 

particular reference point or initial point are searched. 

Then the increase in the distance during a relative time 

between the neighbor trajectory and the reference trajec-

tory is calculated. The future distance is calculated using 

|𝑑(𝑡)| = 𝜖𝑒𝜆𝑡 where 𝜆 is the MLE. Specifically, the pro-

posed algorithm in Hegger et al. (1999) and Rosenstein 

et al. (1993) provides a robust estimation of the MLE 

from a time series. With this algorithm the distance be-

tween trajectories is calculated using the coordinated 

time delay (𝜏). The distance between a reference trajec-

tory xi and a neighbor trajectory xj after the relative time 

t is defined by Eq. (1). 

 𝑑𝑖𝑠𝑡(𝑥𝑖 , 𝑥𝑗; 𝑡) = |𝑥𝑖+𝑡 − 𝑥𝑗+𝑡|. (1) 

Lyapunov exponents are computed using Eq. (2), 

which applies an algorithm for the search of the neighbor 

trajectories (Grassberger et al., 1991). In Eq. (2) i is set, 

searching all neighbors xj of xi inside of a 𝒰𝑖 neighbor-

hood. Finally, the averages of distances between all 

neighbor trajectories and the reference trajectory xi as a 

function of t are computed. 

 𝑆(𝑡) =
1

𝑇
∑ 𝑙𝑛 (

1

|𝒰𝑖|
∑ 𝑑𝑖𝑠𝑡(𝑥𝑖 , 𝑥𝑗; 𝑡)𝑗∈𝒰𝑖

)𝑇
𝑖=1 . (2) 
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Fig. 4. Evolution of Lyapunov exponents and MLE a) Voltage 

recovery case (𝜆= −0.67 ), b) Unstable case ( 𝜆 = 0.306). 

MLE is the slope of the line obtained from linear re-

gression of the set of individual exponents. In this case, 

the time series x(t) is equivalent to voltage time series 

V(t) . The spectrum of LEs for different time series is 

shown in Fig. 4. The voltage recovery case in (a) of Fig. 

1 and unstable case in (b) of Fig. 2. The MLE obtained 

from the regression coefficients is negative for the case 

(a) and positive for the case (b). The positive value of 

MLE in case (b) indicates the chaos and the instability of 

the dynamic time series. 

Concerning the number of samples in the analysis of 

the MLE in time series, one of the main advantages of the 

estimation algorithm used in this paper (Rosenstein et al., 

1993) is that it requires a small set of samples for a robust 

estimation of the MLE. Besides, unlike the stability anal-

ysis performed for other dynamic systems, in power sys-

tems the exponential divergence of trajectories occurs in 

a few seconds, so using more simulation time would 

cause the MLE calculation to reflect the divergence in the 

swings after the collapse of the system (see Fig. 2) and 

not the divergence due to the transition from the power 

system stable equilibrium state to an unstable one. 

B. Algorithm for computing dynamic indices 

The dynamic analysis of bus voltage time series is made 

from computing voltage indices, which determine the de-

viation of the post-disturbance voltage values in relation 

to the pre-disturbance one during a specific time. The 

steps for computing these indices are following: 

Step 1: Voltage index (VI) calculation for each bus 

and each time instant. The VI measures the relative devi-

ation from the voltage with respect to the initial or pre-

disturbance voltage. The VI is calculated applying the 

Eq. (3)  

 𝑉𝐼𝑏
𝑡 =

𝑉𝑏
0−𝑉𝑏

𝑡

𝑉𝑏
0 ; {

𝑏 ∈ [1, 𝑁𝑏]

𝑡 ∈ [𝑡𝑐𝑙 , 𝑡𝑠]
, (3) 

where 𝑉𝑏
0 is the pre-disturbance voltage, 𝑁𝑏 is the total 

number of buses, 𝑡𝑐𝑙 is the fault clearing time and 𝑡𝑠 is 

the simulation time. 

Step 2: Dynamic voltage index (DVI) calculation for 

each bus and each time window. The meaning of the DVI 

is the value below which the relative voltage is main-

tained for a specific number of cycles. The mobile time 

window (Δ𝑡 ) is determined with the Eq. (4) to compute 

the DVI and the number of cycles according to the indus-

trial criterion of Shoup et al. (2004), which is 20 cycles 

of nominal frequency. The DVI for each window is the 

minimum value of the VI values in that time period. The 

DVI is calculated using the Eq. (5), obtaining a DVI 

value for each window of the time series. The comparison 

of the evolution of V(t), VI and DVI is shown in Fig. 5. 

 𝜏 = 20
1

𝑓𝑛𝑜𝑚
= Δ𝑡𝑚,𝑛 = 𝑡𝑛 − 𝑡𝑚, (4) 

 𝐷𝑉𝐼𝑏

Δ𝑡𝑚,𝑛 = min𝑉𝐼𝑏
𝑡 ;  

 {
𝑡 ∈ [𝑡𝑚, 𝑡𝑛]

𝑡𝑚, 𝑡𝑛 ∈ [(𝑡𝑐𝑙 , 𝑡𝑐𝑙 + 𝜏), (𝑡𝑎 − 𝜏, 𝑡𝑎)]
, (5) 

Step 3: DVIb calculation for each bus applying the Eq. 

(6), which is the maximum DVI value of all windows that 

was computed in the step 2. 

 𝐷𝑉𝐼𝑏 = max𝐷𝑉𝐼𝑏

Δ𝑡𝑚,𝑛  . (6) 

Step 4: Wide-area dynamic voltage index (WADVI) 

calculation or index of the whole system with the Eq. (7). 

The WADVI is defined as the maximal DVIb of the sys-

tem. 

 𝑊𝐴𝐷𝑉𝐼 = max
1≤𝑏≤𝑁𝑏

𝐷𝑉𝐼𝑏  . (7) 

C. Contingency classification criteria 

The classification of different operation states according 

to stability levels allows determining the severity of con-

tingencies. In this work, it is proposed to assess the sta-

bility due to a contingency using the MLE, which deter-

mines when the system is stable or unstable. If the result 

of the assessment is stable, the DVI and WADVI are cal-

culated and then compared to a defined threshold to de-

termine whether the state is: emergency, alert or normal. 

The value of WADVI is considered unaccepta-ble when 

it is higher than 0.2, according to the industrial criterion 

(Shoup et al., 2004), and the case in a state of emergency 

is classified. When the WADVI is between 0.1 and 0.2 is 

classified as a state of alert and when the WADVI is less 

than 0.1 is classified as a state of normal operation. This 

classification is shown in Fig. 6.  

For example, the value of λ is -0.679 and the WADVI 

is 0.295 for the case of the mechanism 1 of Fig. 1. This 

case has a value of the MLE less than zero and a WADVI 

index higher than 0.2, therefore it is classified as an emer-

gency case.  In the case of a mechanism 2 of Fig. 2, the 

value of λ is 0.306, which is a positive value, then it is 

classified as an unstable case. 

 
Fig. 5. Evolution of V(t), VI and DVI. 

(a) 

(b) 
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Fig. 6.  Classification criteria. 

 
Fig. 7. Probability density according to the classification. 

IV. SIMULATION RESULTS 

The developed methodology is tested in the New England 

39-bus test system, which is a typical test system for sta-

bility studies. The time-domain dynamic simulations are 

performed in DigSilent Power Factory and the analysis 

of time series in R program 

A. Generation of scenarios  

A total of 10,000 different operating scenarios (Nc) were 

generated covering a wide variety of possible load/gen-

eration scenarios, considering different proportions be-

tween static loads and dynamic loads as small and large 

motors. A randomly selected contingency was applied for 

each operation scenario, in total, 45 different types of 

contingencies were simulated. They could be a fault in a 

transmission line or a generator outage. The fault clearing 

time of 0.08 s, the simulation time of 5 s and the simula-

tion step of 0.02 s was considered.  

B. Post-contingency state classification. 

The methodology proposed in this paper is applied to 

classify the 10,000 cases generated by MC. The results 

of the classification are shown in Table 1. The probability 

density of the WADVI is included in Fig. 7. Cases were 

grouped according to their post-contingency operation 

state. In fact, the shape biased towards higher values of 

the WADVI of the unstable state probability distribution. 

In addition, most cases in an unstable and emergency 

state have a WADVI higher than 0.19 and most of them 

higher than 0.3.  

Regarding the detection of false positives, it was re-

viewed the results of the dynamic simulations for differ-

ent dynamic responses (swings with high and low damp-

ing, collapses at different times, voltage recovery prob-

lems, cases with fast recovery and other variations). The 

above analysis allows to validate that the MLE correctly 

identifies both the cases that reach the fast voltage col-

lapse and the different dynamic changes.   

Table 1. Classification of post-contingency operation state. 

State Number of cases 

Unstable 1730 

Emergency 589 

Alert 2561 

Normal 5120 

Table 2. Contingency ranking by WADVI mean. 

Rank Contingency Mean Rank Contingency Mean 

1 L16_24 0.60 9 L16_19_a 0.38 

2 L16_21 0.58 10 L14_15 0.30 

3 L21_22 0.54 11 L02_25 0.27 

4 L23_24 0.50 12 L01_02 0.27 

5 L15_16 0.47 13 L17_18 0.25 

6 L16_17 0.45 14 L26_29 0.24 

7 L22_23 0.44 15 L26_28 0.23 

8 L16_19_b 0.41 16 L01_39 0.19 

 
Fig. 8. WADVI boxplot for several contingencies. 

C. Contingency ranking  

The classification and ranking of contingencies are per-

formed by statistical processing of the 10,000 scenarios 

according to the mean of the WADVI. In this way, con-

tingencies with WADVI mean higher than or equal to 

0.19 are presented in Table II. It is observed that the first 

four contingencies have mean values above 0.5. The 

WADVI boxplot according to the state classification for 

contingencies with mean higher than 0.3 is shown in Fig. 

8. The boxplot allows recognizing the statistical distribu-

tion of WADVI values for each contingency and state. 

Each contingency produces unstable, emergency, alert or 

normal cases. There is a high dispersion of values in the 

unstable cases for all selected contingencies; this is due 

to the fact of these contingencies produce more unstable 

than stable cases. 

On the other hand, contingencies are ranked accord-

ing to the percentage of cases in which they produce volt-

age instability. Thus, contingencies with more than 40% 

of unstable cases with respect to the analysed cases are 

shown in Table 3. In addition, the percentage of total 

cases in which each contingency produces an emergency 

and or alert state is presented. 

Some contingencies such as faults in lines 16-17, 16-

21, 16-24 and 21-22 produce voltage instability in more 

than 70% of the cases, analysed in the 10,000 scenarios.  
 



Latin American Applied Research  49(4): 225-232 (2019) 

 

230 

Table 3. Contingency ranking by post-disturbance state. 
Rank by 

state 
(by mean) 

Contingency Total 

cases 

Unsta-

ble (%) 

Emer. 

(%) 

Alert 

(%) 

Nor-

mal(%) 

1 (6) L16_17 193 97.4 2.6 0 0 

2 (2) L16_21 213 81.7 15.5 2.8 0 

3 (1) L16_24 198 77.3 20.2 2.5 0 

4 (3) L21_22 209 73.2 12.4 14.4 0 

5 (5) L15_16 193 68.9 11.4 16.6 3.1 

6 (4) L23_24 195 65.6 6.2 20.5 7.7 

7 (7) L22_23 176 63.6 7.4 4 25 

8 (8) L16_19_b 196 49 12.8 34.2 4.1 

9 (9) L16_19_a 215 43.3 19.1 32.6 5.1 

 

At the same time, in these contingencies, the sum of un-

stable cases plus those cases in a state of emergency plus 

cases in a state of alert are equivalent to a 100% of cases 

analysed for each contingency. 

Comparing the ranking results according to the mean 

of the WADVI and according to the post-disturbance 

state, the contingencies of Table 3 correspond with the 

first contingencies with a mean higher than 0.3 of Table 

2, some of them in the same order. These contingencies 

are the most severe contingencies and produce 71% of 

the unstable cases in Table 1. The ranking results based 

on the post-disturbance state allow verifying those the 

critical contingencies obtained from the ranking based on 

the WADVI mean. Some buses are more vulnerable to 

voltage instability, which is revealed with high values of 

DVIb. The order for ranking buses is obtained based on 

the mean DVIb for the 10,000 scenarios. Buses with DVIb 
mean higher than 0.12 are shown in Table 4.  The DVI of 

these buses is presented in boxplots in Fig. 9 classified 

according to their state of stability. 

The system bus with the highest value of the DVIb in-

dex is identified for each case and this bus is associated 

with the operating state obtained from the classification.  

These results are used to rank in Table 5 those buses with 

the highest DVIb according to the number of cases that 

produces voltage instability, which is the result of the 

classification methodology. It is observed that all vulner-

able buses are load buses and added cases of instability 

accumulate more than 75% of the cases classified as un-

stable in Table 1. Seven nodes coincide between the 

buses selected in Table 5 and the buses selected in Table 

4, which represent the buses with the highest vulnerabil-

ity to voltage instability. The results of the identification 

and ranking of vulnerable buses by the post-contingency 

state allow verifying the vulnerable buses identified from 

the ranking by the DVIb mean. 

 

Table 4. Ranking of vulnerable buses by DVIb mean 

Rank Bus Mean 

1 24 0.136 

2 15 0.135 

3 16 0.135 

4 17 0.129 

5 27 0.127 

6 21 0.125 

7 18 0.124 

8 26 0.123 

9 28 0.122 

 
Fig. 9. Boxplot DVI for vulnerable buses. 

Table 5. Ranking of vulnerable buses by state 

Rank by state (by 

DVIb mean) 

Bus Unstable Emergency Alert 

1 (9) 28 255 49 97 

2 (8) 26 197 0 0 

3 (2) 15 192 82 405 

4 (5) 27 187 0 70 

5 (1) 24 139 83 224 

6 (6) 21 114 11 6 

7 (29) 8 80 4 26 

8 (11) 29 72 18 49 

9 (3) 16 66 3 3 

D. Time considerations  

The simulation results obtained in the previous sections 

were developed in a computer with a processor AMD 

Athlon™ II X4 - 3 GHz and 4 GB RAM. The time re-

quired to compute the MLE in all buses of the test sys-

tem for each scenario is 0.11 s. The time to compute the 

dynamic indices for each scenario is 0.09 s. These times 

allow identifying the stability state and after computing 

in a large amount of cases determine the critical contin-

gencies. 

V. CONCLUSIONS 

In this paper, a methodology for classifying contingen-

cies that produce short-term voltage stability problems is 

presented. As part of the methodology, a voltage stability 

classification method is introduced, which allows to clas-

sify the post-contingency operation state in one of the fol-

lowing states: normal, alert, emergency or unstable.  The 

classification is based on the MLE and dynamic voltage 

indices. These indices allow assessing different voltage 

problems such as fast voltage collapse and delayed volt-

age recovery. 

The methodology based on dynamic indices allows 

determining critical contingencies. These results were 

verified with those results obtained from the analysis of 

contingencies according to the classification of the post-

disturbance state. Furthermore, the combined analysis of 

DVIb mean values for each bus and those buses from 

which the WADVI is classified according to the postcon-

tingency operation state allows identifying vulnerable 

buses to voltage instability. 

This methodology has been successfully applied for 

the analysis of contingencies in a test system. 



 J.D. PINZÓN, D.G. COLOMÉ 

 

231 

The most severe contingencies that produce voltage 

stability problems and the vulnerable buses to instability 

were identified applying the proposed methodology. In 

addition, the prior ranking of contingencies will provide 

useful information for dynamic security studies and will 

allow defining alerts to operators and strategies of pre-

ventive and corrective control based on events. At the 

same time, the identification of vulnerable buses will al-

low to determine critical areas and effective location of 

control devices for voltage support. 
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