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Abstract−− The study of the turbulent near wake 

of an airfoil provided with flow control devices shows 

the flow configuration in such conditions and the 

starting vortices mechanism, while, the far wake of-

fers information about the general performance of the 

model. The objective of the present work is to study 

the develop of the fluid-dynamic structures found in 

the NACA 4412 airfoil wake, as well as the develop-

ment of the same structures when flow control tech-

niques are applied by means of a oscillating Gurney 

Flap place in the lower surface of the wing model, 

close to the trailing edge. Tests were performed at a 

given Reynolds numbers and the flow control system 

was set at different frequencies. In order to study the 

effect of the control mechanism on the wake, hot wire 

anemometry techniques were used. Two components 

of the velocity vector were measured - longitudinal 

and vertical - by means of a vertical array of three 

sensors acquiring simultaneously. The intention is to 

quantify the flow general configuration at the airfoil 

wake for different test conditions. The velocity vectors 

will be analyzed, together with the turbulence inten-

sity and integral scales. 

Keywords−− Wind tunnel, Aerodynamic, Detach-

ments, Gurney flap, Hot-wire anemometry. 

I. INTRODUCTION 

The usage of high-lift devices to increase the lift capacity 

of wings has been one of the main goals of re-search in 

the field of flying, since the beginnings of aviation. Al-

most all the airplanes use some kind of high-lift system 

(also cars, motorboats and wind generators). 

The main challenge in this field is to achieve a signif-

icant increase in lift without a significant increase in drag. 

Modern technologies allow to implement passive and ac-

tive control systems which promise to improve their effi-

ciency, exceeding the classical ones. 

One of those high-lift devices is the so-called Gurney 

Flap (Jeffrey and Hurst, 1996). Several research works 

demonstrated that the near wake after an airfoil provided 

with a mini-flap Gurney resembles an asymmetric vortex 

street with vortex structures of different sizes producing 

fluctuations in the global airfoil circulation (Mahrt, 

1991). Focusing on the wake of an airfoil, it is clear that 

an increase in lift is associated to an increased downwash. 

This re-quires a higher asymmetry of the flow in the near 

wake. 

In the near wake of a wing airfoil provided with Gur-

ney mini-flaps, in lift conditions, the starting vortices de-

tached from the upper surface must show a different in-

tensity than those detached from the lower surface. This 

asymmetry assures the mean deviation of the flow asso-

ciated the lift increment provoked by those mini-flaps 

(Giguerè et al., 1995; Casper et al., 2012). The existence 

of the counter-rotating asymmetric vortices, in the near 

wake of an airfoil provided with trailing edge Gurney 

mini-flaps, was experimentally demonstrated. (Boldes et 

al., 2010) In an experimental and numerical study of the 

near wake of a lifting airfoil, (Hah and Lakshminarayana, 

1982), confirmed this behavior as they found that the 

wake becomes symmetric just one chord-length down-

stream the trailing edge. 

One of the aspects that must be considered, when an-

alyzing the effect of this sort of device, are the character-

istics of the incoming flow, such as turbulence intensity, 

space scales and time scales, for the same mean velocity. 

Experimental results were obtained about the behavior of 

Gurney flaps placed at the trailing edge of an airfoil, 

about the effect of different turbulent flows on the lift and 

drag coefficients, compared with a quasi-laminar flow. 

Experiments also clarified the effect of turbulence on 

Gurney mini-flaps of different sizes placed at several dis-

tances from the trailing edge (Colman et al., 2010). All 

these results were obtained analyzing the wake produced 

by the airfoil with GMF. Similar results were found in 

numerical simulations (Wassen et al., 2008). 

The question arising now is how implement flow con-

trol techniques to eliminate, or to weaken, the vortices 

that produce negative circulation, and to strengthen the 

others, in order to increase circulation and lift. This fact 

would result in an increase in the mean flow deviation 

and in the downwash in the near wake. 

Fluid-dynamical models approximate the effect of the 

oscillating flap to the superposition of the effects of a 

curved airfoil with the effects of the displacement of the 

rear stagnation point, generating a Von Kármán wake. 

However, these models do not consider the difference be-

tween the near wake and the far wake. A more accurate 

analysis shows that the previously mentioned effect is 

found in the near wake, where two lines of counter-rotat-

ing vortices with asymmetric strength are shed. Beyond 

one chord length the wake is stabilized resembling a clas-

sical Von Kármán symmetric vortex shedding. 

In order to attain a drag reduction by “stabilizing the 
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wake” some authors suggest the use of span-wise holes, 

slits, serrated flaps and wake-bodies (Van Dam et al., 

1999), while other recommend to eliminate straightfor-

ward the double row of counter-rotating vortices of the 

wake be-hind a Gurney type miniflap (Schatz et al., 

2004). 

Two shear layers emerge alternatively from the root 

and from the tip of a GMF rolling up into a pattern of 

counter rotating vortices, establishing an absolute wake 

instability. When an absolutely unstable scenario exists, 

any arbitrary disturbance injected into the flow propa-

gates upstream and/or downstream. Therefore, it is ex-

pected that the vortex structures generated behind the air-

foil are able to influence the upstream and downstream 

conditions. 

It is quite evident that, for an airfoil provided with 

GMF, the vortex line shed behind the trailing edge must 

be also connected to the overall circulation around the 

airfoil. The strength of the vortices generated by the roll-

ing up of the lower surface shear layer is connected to an 

augmented circulation of the bound vortex, promoting a 

lift increase. This cannot be counteracted by the lift de-

crease due to the weaker opposite circulation connected 

to the counter rotating rolling up shear layer detached 

from the upper surface. 

For all these reasons we propose to study the far wake 

and the near wake of an airfoil provided with GMF, im-

mersed in turbulent flow. Different configurations of the 

model will be tested, in order to find the flow asymme-

tries and to explain the previously mentioned behavior 

and the influence of turbulence. It is important to note 

that there are few works studying the aerodynamic be-

havior and the wake structure of airfoils provided with 

active and/or passive flow control devices, such as GMF, 

immersed in free turbulent flow (Gad-el-Hak, 2001). The 

shear layers related to active GMF, in the wake of the 

airfoils, depend significantly on the characteristics of the 

upstream free flow profile, as well as on the device oscil-

lation frequencies. This implies the need for a more de-

tailed measuring of the fluid dynamics wake structure, 

until a minimum of one chord length behind the airfoil. 

This is the motivation of this work. 

II. METHODS 

A. General 

In order to achieve the previously defined objective, the 

effect on its wake of an oscillating flap placed in an aer-

odynamic airfoil, will be studied. A NACA 4412 air-foil 

provided with a GMF driven by an electro-mechanic sys-

tem was chosen. The GMF was placed near the trailing 

edge of the airfoil on the pressure surface. Instant veloc-

ities in three different points will be simultaneously 

measured with a hot wire anemometer, in order to quan-

tify the effect of the flap on the wake. Instant and mean 

velocities, turbulence intensity, spatial and time scales 

and frequency spectra will be analyzed. 

Temporal and spatial integral scales were calculated 

from the autocorrelation coefficients analysis (Eq. 2). 

The autocorrelation function (Ru) (Eq. 1) and its coeffi-

cient C(t) (Eq. 2) are defined as follows: 

 
Figure 1. Electro-mechanic GMF actuation system. 

 
Figure 2. Model and hot wire anemometer probes. 

 𝑅𝑢´(∆𝑡) = lim
𝑇→∞

1

𝑇
∫ 𝑢´(𝑡) ∙ 𝑢´(𝑡 + ∆𝑡) ∙ 𝑑𝑡

𝑇

0
 (1) 

 𝐶(∆𝑡) =
𝑅𝑢´(∆𝑡)

𝜎𝑢´
2  (2) 

where 𝜎𝑢´
2  is the variance and is defined as: 

 𝜎𝑢´
2 = lim

𝑇→∞

1

𝑇
∫ 𝑢´2(𝑡) ∙ 𝑑𝑡

𝑇

0
 (3) 

The autocorrelation coefficient function takes the 

unity value at time t = 0, when the acquisition starts, and 

trends to zero when the interval of time goes to infinity. 

The time gap between t = 0, and the time when the 

autocorrelation coefficient C(t) takes the value 1/e, for 

the first time, give an approximated value of the integral 

time scale (λt). With this scale, and the mean value of the 

flow component under analysis, the spatial integral tur-

bulent scale (λ) can be calculated, using the Eq. 4. 

 𝜆 = 𝑉 ∙̅̅̅̅ 𝜆𝑦 (4) 

Additionally, the turbulence intensity (Ti) was calcu-

lated as follows: 

 𝑇𝑖𝑢 =
𝜎𝑢´

𝑉
;  𝑇𝑖𝑣 =

𝜎𝑣´

𝑉
 (5) 

B. Facilities and Test Conditions 

The tests were conducted in the wind tunnel of the 

UIDET-LaCLyFA at the National University of La Plata 

(Delnero et al., 2005). It is a closed circuit wind tunnel, 

with a test section of 1.4 m x 1.0 m x 7.5 m and Vmax = 

20 m/s. 

The model was based on a NACA 4412 airfoil and 

was built with a wooden skeleton, with aluminum inserts, 

all covered with a high impact polystyrene sheet. This 

kind of structure gave enough interior space to lodge the 

electro-mechanic crank-connecting rod system, driving 

the aluminum made gurney flap. The engine r.p.m. can 

be varied and so the GMF oscillation frequency, up to a 

maximum of 30Hz. The chord length (C) of the model is 

400mm and its span 800mm. The GMF is placed at 

10%C from the trailing edge and its length is 1.5%C, as 

shown in Fig. 1. 

The model was mounted in the wind tunnel between 

two panels to ensure the flow bi-dimensionality. A 

scheme is shown in Fig. 2.The measurement of the in-

stantaneous velocity field was performed using a hot wire 

anemometry system (CTA Dantec Streamline), with a  
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Figure 3. Measurement points (upper, middle and lower row 

positions). 

 
Figure 4. v mean velocity distribution (upper-middle-lower) 

row-α = 0º. 

dual sensor (fiber film probes 55R51). The acquisition 

was made at a sample frequency of 2 kHz, using a low-

pass band filter at 1 kHz, acquiring 16,384 samples in 

each test. The vertical (v) and longitudinal (u) compo-

nents of velocity were simultaneously measured at three 

points (upper, middle and lower row positions), by means 

of and arrange of three probes. The probes were placed at 

a vertical line, separated 10mm from one another (Fig. 

2). 

Tests were performed at a free stream velocity of 

10m/s. Two angles of attack were used, 0º and 2º. Six 

different configurations were tested: plain model (no 

GMF), fixed GMF and oscillating GMF at four different 

frequencies (16, 20, 25 and 30Hz). The incoming flow 

was found to be turbulent, and 2% turbulence intensity 

was calculated in the surroundings of the model. 

III. RESULTS 

A. Velocity analysis 

Results from the processing and analysis of the acquired 

data are shown by means of mean velocities, scales, in-

tensities and frequency spectra for the two velocity com-

ponents. Mean velocity distribution for the six configu-

rations are plotted along the wake. Both components (u 

and v) are shown in the following figures. 

 
Figure 5. u mean velocity distribution (upper-middle-lower) 

row- α =0º. 
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Figure 6. v mean velocity distribution (upper-middle-lower) 

row- α =2º. 

The u-component is seen to increase in all configura-

tions as measured farther from the trailing edge. How-

ever, the greatest changes are observed in the v-compo-

nent, showing different behaviors in the plain airfoil, in 

the fixed GMF and in the oscillating GMF. The fixed 

GMF generates the greatest vertical velocities, thus, the 

greatest downwash, being responsible for the lift and 

drag increases. 

The oscillating GMF generates higher downwash in 

the far wake, while, the plain airfoil generates downwash 

in the near wake. The behavior did not show remarkable 

differences related to the oscillation frequencies. Accord-

ing to the (Eq. 5), the v component velocity turbulence 

intensity distributions are calculated for the near and far 

fields at the six different test conditions. Results are plot-

ted in Figures 6-10. 

 

 
 

Figure 7. Turbulence Intensity - α = 0º. 

In all cases the turbulence intensity values diminish 

and converge to a unique value in the far wake. In the 

configurations with oscillating GMF the slope is more 

pronounced that in the fixed device. The wake produced 

by the oscillating configurations is less turbulent than the 

one produced by the fixed flap. Again, no remarkable dif-

ferences are shown due to the oscillation frequency. 

When the angle of attack is increased a slight decrease is 

observed in the near wake. In the far wake the behavior 

remains unaltered and constant. 

A. Autocorrelation Analysis  

The spatial integral turbulent scales were determined 

from autocorrelations results and applying frozen flow 

theory (Delnero et al., 2005). The distribution of the auto-

correlation function at null angle of attack is shown for  
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Figure 8. Turbulence Intensity - α = 2º. 

both fields and for the different oscillation frequencies, 

in the following figures.  

Watching the autocorrelation function distribution 

(Fig. 9), it is found that all of them are periodical. In the 

still GMF case the oscillation frequency produced by the 

vortex shedding is found. In the same way, for the oscil-

lating GMF cases it is seen that the forcing frequency is 

imposed. As expected, the shedding frequency is more 

intense in the near field. 

Applying the frozen flow theory, combined with the 

exponential decay criteria, the temporal and spatial tur-

bulent scales are determined for both velocity compo-

nents. The values for three configurations, plain airfoil, 

still GMF and 25Hz frequency – the other frequencies 

show similar results (Figs. 10 and 11). 

 
Figure 9. Autocorrelation Distribution Coefficients - Near field. 

 
Figure 10. Turbulent time scale – u component. 

 
Figure 11. Turbulent time scale – v component. 
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Figure 12. PSD – Fixed Gurney Flap. 

 

In all cases it is seen that the scales are larger at the 

far wake. In the still GMF configuration and oscillating 

GMF configurations the scales are very similar. The plain 

model generates the smallest spatial scales. 

Evidence of chaotic flow characteristics is found from 

both, temporal and spatial scales in the near wake. This 

is due to the velocities and intensities induced by the vor-

tices generated in that area. 

B. PSD Analysis S(f)  

Power Spectral Density (PSD) of the signals was deter-

mined for the different frequencies and for the different 

configurations. The two components of the signal were 

analyzed, plotted (Fig. 12) and tabulated (shown in Ta-

bles 1, 2 and 3) to facilitate their study. Results for the 

three previously mentioned configurations are shown. In 

all cases, for comparative reasons, the plot representing 

the near wake (3%C) and the plot representing the far 

wake (100%C) are shown side by side; while, each row 

represents the position of the represented probe (upper, 

middle and lower).  

The PSD peak indicates the relative amount of energy 

associated with the vortex structures traveling in the 

wake and their dominant frequency. 

From the PSD analysis an increment of power due to 

the introduction of the GMF – oscillating or still – is ob-

served. Energy peaks are observed in both configurations 

provided with GMF, while none is observed in the plane 

airfoil configuration. As expected, in all cases the energy 

diminishes along the wake as the measure is taken farther 

from the trailing edge. The detachment of asymmetric, 

counter-rotating, periodical vortices shed by the still 

GMF shows such energy decrease along the wake keep-

ing its frequency unaltered. Its effect in the near wake and 

in the far wake is very strong. 

In the oscillating GMF wake, several peaks are de-

tected coinciding the forcing frequency to the largest one. 

The rest of the peaks correspond to harmonics of the ac-

quired signal. In general, is seen that in the near wake the 

vortices corresponding to the still GMF are more ener-

getic that those shed by the oscillating GMF. In the far 

wake the vortices and perturbations generated by the os-

cillating GMF remains more energetic along the wake 

than those generated by the still GMF, which decay 

sooner. The forcing energy introduced with the oscillat-

ing GMF seems to be responsible for that effect.  

Table 1 to Table 3 show the reference values and en-

ergy values in all the field. 

IV. DISCUSSION 

The introduction of the still flap in the airfoil is responsi-

ble for the increment in lift and drag forces. This is due 

to the generation of flow instabilities by the shed of coun-

ter-rotating, asymmetric vortices (Boldes et al., 2010). It 

was also proved that the GMF performance changed 

when submitted to flows with different turbulence char-

acteristics (Colman et al., 2010). The questions arising 

now are: The efficiency of the airfoil is improved as the 

wake becomes more turbulent? Is more downwash gen-

erated? 

The analysis of the instant velocity components for 

the different configurations, regarding their directions 

and intensities, analyzed together with the behavior of the 

model at the different flow conditions, may offer a good 

approach to the answer. See Fig. 4 to Fig. 6. 

From the turbulence intensity, time scales and spatial 

scales analysis the airfoil wake, with or without the flow 

control devices, is flow-dynamically characterized. Ab-

solute flow instabilities could be found in laminar and 

turbulent flow by strong peaks in the PSD charts, as it is 

shown in Fig. 12, for the fixed Gurney flap vortex shed-

ding.  

Values presented in Table 1 validate the hypothesis 

about nearfield upper and lower vortex strength differ- 
 

Table 1. PSD peaks values for baseline wing section. 

 mm. 6 12 18 24 

Upper Row 
f(Hz) 155.8 183.6 162.6 50.78 

S(f) 4.657 3.693 3.437 3.445 

Middle 

Row 

f(Hz) 33.69 190.4 23.44 18.55 

S(f) 1.985 2.849 3.232 2.663 

Lower Row 
f(Hz) 43.46 49.8 0.9776 49.8 

S(f) 0.1068 0.2328 0.2367 0.2958 

 mm. 30 40 80 120 

Upper Row 

 

f(Hz) 6.348 117.7 191.9 151.4 

S(f) 3.478 2.542 2.718 1.869 

Middle 

Row 

f(Hz) 33.2 174.8 212.4 187.5 

S(f) 2.253 2.494 2.346 2.415 

Lower Row 
f(Hz) 49.8 49.8 49.8 187.5 

S(f) 0.4644 0.8061 0.7271 0.8511 

 mm. 160 200 240 280 

Upper Row 

 

f(Hz) 235.8 49.8 219.7 219.9 

S(f) 1.942 1.728 1.492 1.784 

Middle 

Row 

f(Hz) 247.1 175.3 206.5 223.6 

S(f) 2.417 2.198 1.979 2.064 

Lower Row 
f(Hz) 247.1 243.7 233.4 243.7 

S(f) 1.165 1.241 1.85 1.663 

 mm. 320 360 400  

Upper Row 

 

f(Hz) 238.8 211.4 49.8  

S(f) 1.38 1.403 1.723  

Middle 

Row 

f(Hz) 228.5 211.4 247.1  

S(f) 2.082 2.276 1.973  

Lower Row 
f(Hz) 228.5 211.4 197.8  

S(f) 1,784 1.873 1.527  
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Table 2. PSD values for fixed Gurney flap at 96% chord length. 

 mm. 6 12 18 24 

Upper Row 
f(Hz) 24.41 23.93 23.93 23.93 

S(f) 578.2 572.5 495.2 370 

Middle Row 
f(Hz) 24.41 23.93 23.93 23.93 

S(f) 91.81 184.9 224.7 211.7 

Lower Row 
f(Hz) 24.41 23.93 23,93 23.93 

S(f) 213.4 143.6 79.8 56.83 

 mm. 30 40 80 120 

Upper Row 

 

f(Hz) 23.93 23.93 23.93 23.93 

S(f) 360.7 256 146.6 168.8 

Middle Row 
f(Hz) 23.93 23.93 23.93 23.93 

S(f) 234.1 266.8 148.9 138.1 

Lower Row 
f(Hz) 23.93 23.93 23.93 23.93 

S(f) 61.75 96.88 118.9 82.36 

 mm. 160 200 240 280 

Upper Row 

 

f(Hz) 23.93 23.93 23.93 23.93 

S(f) 150.5 17.4 141.6 128.7 

Middle Row 
f(Hz) 23.93 23.93 23.93 23.93 

S(f) 113.3 91.78 113.5 108.6 

Lower Row 
f(Hz) 23.93 23.93 23.93 23.93 

S(f) 49.22 33.7 29.05 28.03 

 mm. 320 360 400  

Upper Row 

 

f(Hz) 23.93 23.93 23.44  

S(f) 120.2 125.5 108.7  

Middle Row 
f(Hz) 23.93 23.93 23.44  

S(f) 108 119.8 107  

Lower Row 
f(Hz) 23.93 23.93 23.44  

S(f) 29.59 22.56 24.55  

 

Table 3. PSD values for oscillating Gurney flap at 25Hz. 

 mm. 6 12 18 24 

Upper Row 
f(Hz) 120.6 122.6 127 125.5 

S(f) 620.2 977.2 820.6 787.8 

Middle Row 
f(Hz) 120.6 122.6 122.6 125.5 

S(f) 71.66 484.2 838.8 1422 

Lower Row 
f(Hz) 120.6 122.6 126.5 125.5 

S(f) 650.7 786 463.9 663.2 

 mm. 30 40 80 120 

Upper Row 

 

f(Hz) 126.5 128.9 129.4 131.8 

S(f) 750.2 532.8 360 171.9 

Middle Row 
f(Hz) 126.5 128.9 129.4 131.8 

S(f) 1562 1240 893.3 436.3 

Lower Row 
f(Hz) 126.5 128.9 129.4 132.3 

S(f) 745.8 531.8 436.7 186.9 

 mm. 160 200 240 280 

Upper Row 

 

f(Hz) 134.8 130.9 130.9 130.9 

S(f) 160.2 81.19 65.21 37.21 

Middle Row 
f(Hz) 134.8 130.9 133.8 130.9 

S(f) 391.2 186.4 158.6 110.7 

Lower Row 
f(Hz) 134.8 130.9 133.8 130.4 

S(f) 213.1 103.7 80.86 57.16 

 mm. 320 360 400  

Upper Row 

 

f(Hz) 134.3 133.8 132.8  

S(f) 49.84 25.77 23.85  

Middle Row 
f(Hz) 134.3 134.3 132.8  

S(f) 153.3 69.76 60.2  

Lower Row 
f(Hz) 134.3 133.8 130.9  

S(f) 90.4 46.12 36.21  

ences as a mechanism capable of generating extra lift. It 

is assumed that PSD peaks take place in that zone where 

vortices start to growth and detach starting their move-

ment into the wake. 

The intermittent vortex shedding at Gurney flap up-

per end have been reported at reference (Troolin et al., 

2006), interpreted as a perturbation mechanism acting 

upon the shear layer coming from the wing section upper 

surface close to its instantaneous separation point. There-

fore the wing section lower surface shear layer separation 

takes place under different condition compared to that of 

the baseline wing section, leading to an asymmetrical 

vortex shedding in the vertical plane. 

According to near field wake results presented in this 

work, it is possible to think that asymmetrical counter-

rotating vortex generated by the fixed Gurney flap at the 

trailing edge are the mechanism that lead to lift enhanced. 

Also, these turbulent flow case results suggest the pres-

ence of the same effect reported in laminar flow cases at 

the same Reynolds number. 

V. CONCLUSIONS 

According to the objective of this work tests were con-

ducted, results were processed and analyzed in order to 

fluid-dynamically characterize the wake flow and its pos-

sible impact on the efficiency of the airfoil provided with 

an active flow control system. 

The wake behind a 2D wing provided by Gurney flap 

under turbulent flow could be divided into two zones. 

The near field wake extents from the wing trailing edge 

up to 10% wing chord downstream. From that point on, 

the far field wake takes place. 

A periodical detachment of vortices phenomena de-

velops in the near field of the wake, producing an asym-

metrical vortex shedding between the upper and the 

lower trailing edge surfaces which increase the down-

wash. The wake stabilizes while the spatial turbulent 

scales increase as it moves beyond 50% wing chord 

length. In the oscillating Gurney flap case the energy of 

the wake does not have a well define behavior, in contrast 

to the clear energy decay observed in fixed Gurney flap 

condition. 

The appearance of the asymmetric counterrotating 

vortices in still GMF wake and their frequency of detach-

ment is a consequence of the variation of the pressure in 

that area and of the movement of the stagnation point. All 

this generates the characterized turbulent wake. In the 

case of the oscillating GMF the pressure variation is dif-

ferent, since the movement of the stagnation point is dif-

ferent and depend on the incoming flow, on the geometric 

characteristics of the GMF and on its relative position on 

the airfoil. In this case, as shown in Wassen et al. (2017), 

the vortices generated there present different intensities 

and scales. This, together with the incoming flow, results 

in wake with less turbulence intensity than for the still 

GMF. It would be interesting to make the GMF oscillate 

at a frequency similar to the detachment frequency since, 

in this manner, it would be possible to recognize the ef-

fect. When the frequency is lower, as in our experiment, 

several vortices are detached during the GMF movement 

instead of only one, as would be the ideal situation. 

The aim of our work is to generate a more suitable 
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induced Gurney flap vortex wake by controlling the evo-

lution time of vortex structures, shedding time rate, vor-

tex strength and scales, etc. as an active flow control 

mechanism to enhanced aerodynamic performance. In 

this way we could enhance the application and perfor-

mance of such Gurney Flap used in racing car spoilers, 

wind generator blades and aircraft high lift devices at dif-

ferent flight conditions. For example, In racing car could 

be used in different race conditions enhancing de down-

force results. In wind generators blades to change starting 

torque of the wind turbine in different incident wind con-

ditions 
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