EFFECTS OF HOMOGENEOUS AND HETEROGENEOUS REACTIONS ON THE THERMALLY STRATIFIED WATER-BASED NANOFLUID STREAMING ABOVE AN EXTENDING SURFACE
DOI:
https://doi.org/10.52292/j.laar.2023.1031Keywords:
Nanofluid, Heat transfer, MHD, homogeneous and heterogeneous reaction, Velocity slipAbstract
The effect of homogeneous and heterogeneous reactions, as well as second-order velocity slip, on the magnetic influenced flow of nanofluid (Cu-water and MgO-water) passes above an extending surface has been examined. To alter the nature of leading equations of this problem, a new set of dimensionless variables have been employed. The resulting equations with the corresponding surface restrictions are solved using the Runge-Kutta-Fehlberg technique (RKF45) by developing a code in Maple-18. The outcomes of this investigation are presented in terms of pictorial mode with the effects of different novel flow parameters. Also, numerical values of physical quantities that are associated with this problem are set in terms of tabular mode. It is perceived that increasing the number of solid particles, the thermal and mass fractions of the nanofluid behave as an enhancing function, whereas the motion of the nanofluid is a decreasing function.
Published
Issue
Section
License
Copyright (c) 2023 Latin American Applied Research - An international journal

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Once a paper is accepted for publication, the author is assumed to have transferred its copyright to the Publisher. The Publisher will not, however, put any limitation on the personal freedom of the author to use material from the paper in other publications. From September 2019 it is required that authors explicitly sign a copyright release form before their paper gets published. The Author Copyright Release form can be found here