MODEL DECOMPOSITION BASED ABNORMAL PARAMETER ESTIMATION FOR DISTILLATION COLUMN
DOI:
https://doi.org/10.52292/j.laar.2018.263Keywords:
Model decomposition, Parameter estimation, Fault diagnosis, DistillationAbstract
Parameter estimation method can produce useful physical parameters in finding abnormal causes, but nonlinear model makes this method computationally intensive and non-robust for distillation scenario. In this paper, we propose a model decomposition based parameter estimation method for distillation column diagnosis purposes. Nonlinear first principles dynamic model is divided into some disjoint submodels through occurrence matrix analysis. The whole model is used to monitor distillation process and the submodel that gives the highest contribution to the generated residual is selected to perform abnormal parameter estimation. Application results from stripping tower in the popular Tennessee Eastman challenge problem show that the model decomposition based diagnosis scheme is more time-saving and robust than pure nonlinear model based scheme.
Published
Issue
Section
License
Once a paper is accepted for publication, the author is assumed to have transferred its copyright to the Publisher. The Publisher will not, however, put any limitation on the personal freedom of the author to use material from the paper in other publications. From September 2019 it is required that authors explicitly sign a copyright release form before their paper gets published. The Author Copyright Release form can be found here