POWER CONSUMPTION OPTIMIZATION IN REED SOLOMON ENCODERS OVER FPGA
DOI:
https://doi.org/10.52292/j.laar.2014.422Keywords:
Optimization, low power consumption, FPGA, Reed Solomon Encoder, VHDL designAbstract
This paper presents an analysis of the Reed Solomon encoder model and GF (2m) multiplier component, with the aim of optimizing the power consumption for reconfigurable hardware. The methods used consisted of concatenation and reassignment circuit signals in the VHDL description. This treatment allowed achieving a reduction in the consumption of hardware resources and optimizing power consumption in the multiplier of 7.89%, which results in a reduction of the dynamic power of a 42.42% in the coder design optimized. With this development, it provides a design method with good performance, which can be applied to other circuits.
Published
Issue
Section
License
Once a paper is accepted for publication, the author is assumed to have transferred its copyright to the Publisher. The Publisher will not, however, put any limitation on the personal freedom of the author to use material from the paper in other publications. From September 2019 it is required that authors explicitly sign a copyright release form before their paper gets published. The Author Copyright Release form can be found here