LINEAR ALGEBRA AND OPTIMIZATION BASED CONTROLLER DESIGN FOR TRAJECTORY TRACKING OF TYPICAL CHEMICAL PROCESS
DOI:
https://doi.org/10.52292/j.laar.2014.468Keywords:
Control System Design, Nonlinear Model, Tracking Trajectory Control, Numerical Methods, Typical Chemical ProcessAbstract
This paper presents a new controller design to tracking trajectory of a typical chemical process. The plant model is represented by numerical methods and, from this approach; the control actions for an optimal operation of the system are obtained. Its main advantage is that the condition for the tracking error tends to zero and the calculation of control actions, are obtained solving a system of linear equations. The proofs of convergence to zero of the tracking error are presented. Simulation results show the good performance of the proposed control system.
Published
Issue
Section
License
Once a paper is accepted for publication, the author is assumed to have transferred its copyright to the Publisher. The Publisher will not, however, put any limitation on the personal freedom of the author to use material from the paper in other publications. From September 2019 it is required that authors explicitly sign a copyright release form before their paper gets published. The Author Copyright Release form can be found here