MHD CASSON NANOFLUID FLOW OVER A STRETCHING SURFACE EMBEDDED IN A POROUS MEDIUM: EFFECTS OF THERMAL RADIATION AND SLIP CONDITIONS
DOI:
https://doi.org/10.52292/j.laar.2021.523Keywords:
Casson fluid, Magnetohydrodynamic, Nanofluid, stretching sheet, Thermal radiationAbstract
This article presents a numerical study for a magnetohydrodynamic flow of a non-Newtonian Casson nanofluid over a stretching sheet embedded in a porous medium under the impacts of non-linear thermal radiation, heat generation/absorption, Joule heating and slips boundary conditions. A two-phase nanofluid model is applied to represent the nanofluid mixture. The porous medium is represented via the Darcy model. A similar solution is obtained for the governing equations and a numerical treatment based on the Runge-Kutta method is conducted to the resulting system of equations. In this study, the controlling physical parameters are the Casson fluid parameter , the magnetic field , the radiation parameter , the Brownian motion parameter and the thermophoresis parameter . The obtained results reveal that an increase in the Casson parameter enhances both of the local Nusselt and the Sherwood number while they are reduced as the non-linear radiation parameter increases. In addition, an increase in the magnetic field parameter supports the skin friction coefficient regardless the value of the Casson parameter.
Published
Issue
Section
License
Copyright (c) 2021 Latin American Applied Research - An international journal

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Once a paper is accepted for publication, the author is assumed to have transferred its copyright to the Publisher. The Publisher will not, however, put any limitation on the personal freedom of the author to use material from the paper in other publications. From September 2019 it is required that authors explicitly sign a copyright release form before their paper gets published. The Author Copyright Release form can be found here