COMPARATIVE PERFORMANCE OF CARBOXYMETHYL CELLULOSE AS SUBSTRATE FOR ELECTRICITY GENERATION IN MICROBIAL FUEL CELL: A REVIEW
DOI:
https://doi.org/10.52292/j.laar.2021.661Keywords:
CMC, Microorganism, Enzymatic electrode, Cellulase enzyme, Microbial fuel cellAbstract
Due to the global energy crisis in the world and no proper utilization of renewable and non-renewable resources, different experimental design approaches and substrates have been employed to produce bioelectricity in an MFC. The major substrate that has been tried to focus in this review paper is carboxymethyl cellulose (CMC). Carboxymethyl cellulose is an important factor in Microbial fuel cell with great importance in industry. No known enzyme is directly involved in the oxidation/reduction of CMC, however, carboxymethyl cellulases attack, specifically CMC. Moreover, our knowledge on electrochemically active bacteria is inadequate. Although, knowledge about electrochemically active bacteria is inadequate, distinct cellulose degrading bacteria have been isolated for their higher cellulase activity. Similarly, pure bacterial cultures and co-cultures have been extensively used in degrading CMC for power and electricity generation. CMC concentration and effect of different substitution factors also play an important role in voltage generation. Different ways to make enzymatic electrode for current production using CMC fed reactor were also discussed in this study. This review gives an overview about the current developments of CMC being used as substrate in MFCs and encourages to develop more efficient processes for improved bioelectricity production in MFCs.
Published
Issue
Section
License
Once a paper is accepted for publication, the author is assumed to have transferred its copyright to the Publisher. The Publisher will not, however, put any limitation on the personal freedom of the author to use material from the paper in other publications. From September 2019 it is required that authors explicitly sign a copyright release form before their paper gets published. The Author Copyright Release form can be found here