ON HYDROMAGNETIC BOUNDARY LAYER FLOW OF NANOFLUIDS OVER A PERMEABLE MOVING SURFACE WITH NEWTONIAN HEATING
DOI:
https://doi.org/10.52292/j.laar.2014.419Keywords:
Magnetohydrodynamics, convective heating, boundary layer, nanofluids, permeable plateAbstract
The magnetohydrodynamics (MHD) boundary layer flow of nanofluids past a permeable moving flat plate with convective heating at the plate surface has been studied. The nanofluids considered contain water as the base fluid with copper (Cu) or Alumina (Al2O3) as the nanoparticles. The model equations are obtained and solved numerically by applying shooting iteration technique together with the fourth order Runge-Kutta-Fehlberg integration scheme. The influence of pertinent parameters on velocity, temperature, skin friction and Nusselt number are investigated. The obtained results are presented graphically and the physical aspects of the problem discussed quantitatively.
Published
Issue
Section
License
Once a paper is accepted for publication, the author is assumed to have transferred its copyright to the Publisher. The Publisher will not, however, put any limitation on the personal freedom of the author to use material from the paper in other publications. From September 2019 it is required that authors explicitly sign a copyright release form before their paper gets published. The Author Copyright Release form can be found here