DEVELOPMENT OF POLY (LACTIC-CO-GLYCOLIC ACID)/ BIOGLASS FIBERS USING AN ELECTROSPINNING TECHNIQUE
DOI:
https://doi.org/10.52292/j.laar.2018.271Keywords:
Electrospinning, calcium phosphate glass, PLGA, microfibersAbstract
This work establishes experimental conditions for the synthesis of polymeric fibers using the electrospinning technique, modifying some operational parameters such as drum collector rotation speed and applied voltage were modified. The samples were obtained from a copolymer of poly(lacticco-glycolic acid) (PLGA), with a molecular weight of approximately 220,000 g/mol, dissolved in a dimethyl sulfoxide/dichloromethane (3:1 v/v) solution. With the aim of developing scaffolds for bone tissue engineering, we added a calcium phosphate glass based on 44.5CaO-44.5P2O5-11Na2O to the fibrous PLGA structures. The preliminary characterization of these PLGA structures with and without the addition of biodegradable glass was performed using SEM analysis. We found the formation of aligned and homogeneous fibers with an average diameter of 5.2 ± 2.1 µm when using the 800 rpm - 8cm - 9 kV parameters. In addition, the incorporation of 1 wt.% of previously silanized calcium phosphate particles substantially altered the fiber morphology and porosity. However, a substantial increase in the bioactivity of the composite was observed in contrast with the unmodified PLGA.
Published
Issue
Section
License
Once a paper is accepted for publication, the author is assumed to have transferred its copyright to the Publisher. The Publisher will not, however, put any limitation on the personal freedom of the author to use material from the paper in other publications. From September 2019 it is required that authors explicitly sign a copyright release form before their paper gets published. The Author Copyright Release form can be found here